Hauptseite: Unterschied zwischen den Versionen

Aus MWiki
Wechseln zu: Navigation, Suche
K (EW-Verfahren)
(Universelles Mehrschrittverfahren)
(14 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
 
__NOTOC__
 
__NOTOC__
 
= Willkommen bei MWiki =
 
= Willkommen bei MWiki =
== Satz des Monats ==
+
== Sätze des Monats ==
=== EW-Verfahren ===
 
Ist das lineare Gleichungssystems (LGS) <math>Ax = b \in  {}^{\nu}\mathbb{Q}^{n}</math> mit <math>n \in {}^{\nu}\mathbb{N}^*</math> eindeutig lösbar, berechnet das ''Einheitswurzelverfahren (EW-Verfahren)'' <math>x \in {}^{\nu}\mathbb{Q}^{n}</math> für <math>A \in {}^{\nu}\mathbb{Q}^{n \times n}</math> in <math>\mathcal{O}(n^2)</math>.
 
  
=== Beweis und Algorithmus ===
+
=== Universelles Mehrschrittverfahren ===
Seien <math>R_1 := (r_{1jk}) = (r_{1kj}) = R_1^T \in {}^{\nu}\mathbb{C}^{n \times n}, n \in {}^{\nu}2\mathbb{N}^*, r_{11k} := 1</math> und für <math>j &gt; 1</math> sowie <math>n_{jk} := j + k - 3</math> sowohl <math>r_{1jk} := \hat{n}e^{i\tau n_{jk}/n}</math> mit  <math>n_{jk} &lt; n</math> als auch <math>r_{1jk} := \hat{n}e^{i\tau(n_{jk} - \acute{n})/n}</math> mit <math>n_{jk} \ge n</math>. Durch Vertauschung der ersten Zeile bzw. Spalte mit der <math>j</math>-ten und entsprechender Vertauschung der übrigen Zeilen und Spalten entstehen die Matrizen <math>R_j = R_j^T</math> mit <math>j &gt; 1</math>. Es gilt offenbar rg<math>(R_j) = n</math> für alle <math>j</math>. Folgt <math>x_j = 1</math> für alle <math>j</math> aus <math>A(x - x^\prime) = (1 - x_j, ..., 1 - x_j)^T</math> und <math>Ax^\prime = b</math>, so ist höchstwahrscheinlich rg<math>(A) = n</math>.
+
 
 +
Mit <math>n \in {}^{\nu}\mathbb{N}_{\le p}, k, m, p \in {}^{\nu}\mathbb{N}^{*}, d_{\curvearrowright B} x \in\, ]0, 1[, x \in [a, b] \subseteq {}^{\omega}\mathbb{R}, y : [a, b] \rightarrow {}^{\omega}\mathbb{R}^q, f : [a, b] \times {}^{\omega}\mathbb{R}^{q \times n} \rightarrow {}^{\omega}\mathbb{R}^q, g_k(\curvearrowright B x) := g_{\acute{k}}(x)</math> und <math>g_0(a) = f((\curvearrowleft B)a, y_0, ... , y_{\acute{n}})</math> ergibt die Taylorreihe des Anfangswertproblems <math>n</math>-ter Ordnung <math>y^\prime(x) = f(x, y((\curvearrowright B)^0 x), ... , y((\curvearrowright B)^{\acute{n}} x))</math><div style="text-align:center;"><math>y(\curvearrowright B x) = y(x) - d_{\curvearrowright B}x\sum\limits_{k=1}^{p}{i^{2k} g_{p-k}((\curvearrowright B) x)\sum\limits_{m=k}^{p}{\widehat{m!}\binom{\acute{m}}{\acute{k}}}} + \mathcal{O}((d_{\curvearrowright B} x)^{\grave{p}}).\square</math></div>
 +
 
 +
=== Satz von Goldbach ===
 +
 
 +
Jede gerade Zahl, die größer als 2 ist, ist Summe zweier Primzahlen.
 +
 
 +
==== Beweis: ====
 +
Induktion über alle Primzahlabstände bis zum jeweils maximal möglichen.<math>\square</math>
 +
 
 +
=== Fundierungssatz ===
 +
 
 +
Erst die Forderung des Fundierungsaxioms, dass jede nichtleere Teilmenge <math>X \subseteq Y</math> ein Element <math>x_0</math> enthält, sodass <math>X</math> und <math>x_0</math> disjunkt sind, garantiert Zyklenfreiheit.
 +
 
 +
==== Beweis: ====
 +
Es wird <math>X := \{x_m : x_0 := \{\emptyset\}, x_{\omega} := \{x_1\}</math> und <math>x_{\acute{n}} := \{x_n\}</math> mit <math>m \in {}^{\omega}\mathbb{N}</math> und <math>n \in {}^{\omega}\mathbb{N}_{\ge 2}\}</math> gesetzt.<math>\square</math>
  
Folgt <math>a_{jk} \le 0</math> für mindestens ein Paar <math>(j, k)</math> aus <math>A := (a_{jk})</math>, so werden die Summe <math>s_0 := \sum\limits_{j=1}^m{b_j\varepsilon^j}</math> mit einer beliebigen transzendenten Zahl <math>\varepsilon</math> und <math>s_k := \sum\limits_{j=1}^m{a_{jk}\varepsilon^j} \ne 0</math> für alle <math>k</math> gebildet. Für <math>s_k &lt; 0</math> wird <math>x_k</math> durch <math>-x_k</math> ersetzt. Dann wird ein Vielfaches von <math>s^Tx</math> bzw. <math>s_0</math> zu <math>Ax = b</math> addiert, sodass nunmehr <math>a_{jk} > 0</math> für alle <math>(j, k)</math> gilt. Mit <math>D_j := (d_{jk}), d_{jk} = \delta_{jk}/\prod\limits_{m=1}^n{a_{jm}}</math> und <math>C_j := D_j R_j = (c_{jk})</math> folgt <math>x_j^\prime = (AC_jx^\prime)_j = (C_jb)_j</math> für das Kronecker-Delta <math>\delta_{jk}</math>. Gilt jedoch <math>x_j^\prime = 0 \ne b_j</math> für ein <math>j</math>, ist das LGS nicht lösbar.<math>\square</math>
 
 
== Leseempfehlung ==
 
== Leseempfehlung ==
  

Version vom 1. Juni 2021, 00:55 Uhr

Willkommen bei MWiki

Sätze des Monats

Universelles Mehrschrittverfahren

Mit [math]\displaystyle{ n \in {}^{\nu}\mathbb{N}_{\le p}, k, m, p \in {}^{\nu}\mathbb{N}^{*}, d_{\curvearrowright B} x \in\, ]0, 1[, x \in [a, b] \subseteq {}^{\omega}\mathbb{R}, y : [a, b] \rightarrow {}^{\omega}\mathbb{R}^q, f : [a, b] \times {}^{\omega}\mathbb{R}^{q \times n} \rightarrow {}^{\omega}\mathbb{R}^q, g_k(\curvearrowright B x) := g_{\acute{k}}(x) }[/math] und [math]\displaystyle{ g_0(a) = f((\curvearrowleft B)a, y_0, ... , y_{\acute{n}}) }[/math] ergibt die Taylorreihe des Anfangswertproblems [math]\displaystyle{ n }[/math]-ter Ordnung [math]\displaystyle{ y^\prime(x) = f(x, y((\curvearrowright B)^0 x), ... , y((\curvearrowright B)^{\acute{n}} x)) }[/math]

[math]\displaystyle{ y(\curvearrowright B x) = y(x) - d_{\curvearrowright B}x\sum\limits_{k=1}^{p}{i^{2k} g_{p-k}((\curvearrowright B) x)\sum\limits_{m=k}^{p}{\widehat{m!}\binom{\acute{m}}{\acute{k}}}} + \mathcal{O}((d_{\curvearrowright B} x)^{\grave{p}}).\square }[/math]

Satz von Goldbach

Jede gerade Zahl, die größer als 2 ist, ist Summe zweier Primzahlen.

Beweis:

Induktion über alle Primzahlabstände bis zum jeweils maximal möglichen.[math]\displaystyle{ \square }[/math]

Fundierungssatz

Erst die Forderung des Fundierungsaxioms, dass jede nichtleere Teilmenge [math]\displaystyle{ X \subseteq Y }[/math] ein Element [math]\displaystyle{ x_0 }[/math] enthält, sodass [math]\displaystyle{ X }[/math] und [math]\displaystyle{ x_0 }[/math] disjunkt sind, garantiert Zyklenfreiheit.

Beweis:

Es wird [math]\displaystyle{ X := \{x_m : x_0 := \{\emptyset\}, x_{\omega} := \{x_1\} }[/math] und [math]\displaystyle{ x_{\acute{n}} := \{x_n\} }[/math] mit [math]\displaystyle{ m \in {}^{\omega}\mathbb{N} }[/math] und [math]\displaystyle{ n \in {}^{\omega}\mathbb{N}_{\ge 2}\} }[/math] gesetzt.[math]\displaystyle{ \square }[/math]

Leseempfehlung

Nichtstandardmathematik