Hauptseite: Unterschied zwischen den Versionen

Aus MWiki
Wechseln zu: Navigation, Suche
K (Fundamentalsatz der Algebra)
(Universelles Mehrschrittverfahren)
(4 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
 
__NOTOC__
 
__NOTOC__
 
= Willkommen bei MWiki =
 
= Willkommen bei MWiki =
=== Cauchyscher Integralsatz ===
+
== Sätze des Monats ==
  
Für die Nachbarschaftsrelationen <math>B \subseteq {A}^{2}</math> und <math>D \subseteq [a, b]</math> mit einer einfach zusammenhängenden <math>h</math>-Menge <math>A \subseteq {}^{\omega}\mathbb{C}</math>, infinitesimalem <math>h</math> sowie einer holomorphen Funktion <math>f: A \rightarrow {}^{\omega}\mathbb{C}</math> und einem geschlossenen Weg <math>\gamma: [a, b[\rightarrow \partial A</math>, wenn wir <math>\curvearrowright B \gamma(t) = \gamma(\curvearrowright D t)</math> mit <math>t \in [a, b[</math> wählen, gilt
+
=== Universelles Mehrschrittverfahren ===
<div style="text-align:center;"><math>\int\limits_{\gamma }{f(z)dBz}=0.</math></div>
 
  
'''Beweis:''' Aufgrund der Cauchy-Riemannschen partiellen Differentialgleichungen und des Satzes von Green gilt mit <math>x := \text{Re} \, z, y := \text{Im} \, z, u := \text{Re} \, f, v := \text{Im} \, f</math> und <math>{A}^{-} := \{z \in A : z + h + ih \in A\}</math>
+
Mit <math>n \in {}^{\nu}\mathbb{N}_{\le p}, k, m, p \in {}^{\nu}\mathbb{N}^{*}, d_{\curvearrowright B} x \in\, ]0, 1[, x \in [a, b] \subseteq {}^{\omega}\mathbb{R}, y : [a, b] \rightarrow {}^{\omega}\mathbb{R}^q, f : [a, b] \times {}^{\omega}\mathbb{R}^{q \times n} \rightarrow {}^{\omega}\mathbb{R}^q, g_k(\curvearrowright B x) := g_{\acute{k}}(x)</math> und <math>g_0(a) = f((\curvearrowleft B)a, y_0, ... , y_{\acute{n}})</math> ergibt die Taylorreihe des Anfangswertproblems <math>n</math>-ter Ordnung <math>y^\prime(x) = f(x, y((\curvearrowright B)^0 x), ... , y((\curvearrowright B)^{\acute{n}} x))</math><div style="text-align:center;"><math>y(\curvearrowright B x) = y(x) - d_{\curvearrowright B}x\sum\limits_{k=1}^{p}{i^{2k} g_{p-k}((\curvearrowright B) x)\sum\limits_{m=k}^{p}{\widehat{m!}\binom{\acute{m}}{\acute{k}}}} + \mathcal{O}((d_{\curvearrowright B} x)^{\grave{p}}).\square</math></div>
  
<div style="text-align:center;"><math>\int\limits_{\gamma }{f(z)dBz}=\int\limits_{\gamma }{\left( u+iv \right)\left( dBx+idBy \right)}=\int\limits_{z\in {{A}^{-}}}{\left( i\left( \frac{\partial Bu}{\partial Bx}-\frac{\partial Bv}{\partial By} \right)-\left( \frac{\partial Bv}{\partial Bx}+\frac{\partial Bu}{\partial By} \right) \right)dB(x,y)}=0.\square</math></div>
+
=== Satz von Goldbach ===
  
=== Fundamentalsatz der Algebra ===
+
Jede gerade Zahl, die größer als 2 ist, ist Summe zweier Primzahlen.
  
Für jedes nicht-konstante Polynom <math>p \in {}^{(\omega)}\mathbb{C}</math> gibt es ein <math>z \in {}^{(\omega)}\mathbb{C}</math> mit <math>p(z) = 0</math>.
+
==== Beweis: ====
 +
Induktion über alle Primzahlabstände bis zum jeweils maximal möglichen.<math>\square</math>
  
'''Indirekter Beweis:''' Durch affin-lineare Variablensubstitutionen läst sich <math>1/p(0) \ne \mathcal{O}(\text{d0})</math> erreichen. Die Annahme von <math>p(z) \ne 0</math> für alle <math>z \in {}^{(\omega)}\mathbb{C}</math> ergibt für das holomorphe <math>f(z) := 1/p(z)</math> wegen <math>f(1/\text{d0}) = \mathcal{O}(\text{d0})</math>.
+
=== Fundierungssatz ===
  
Aufgrund der Mittelwertungleichung <math>|f(0)| \le {|f|}_{\gamma}</math> gilt mit <math>\gamma = \partial\mathbb{B}_{r}(0)</math> und beliebigem <math>r \in {}^{(\omega)}\mathbb{R}_{&gt;0}</math> also <math>f(0) = \mathcal{O}(\text{d0})</math> im Widerspruch zur Voraussetzung.<math>\square</math>
+
Erst die Forderung des Fundierungsaxioms, dass jede nichtleere Teilmenge <math>X \subseteq Y</math> ein Element <math>x_0</math> enthält, sodass <math>X</math> und <math>x_0</math> disjunkt sind, garantiert Zyklenfreiheit.
 +
 
 +
==== Beweis: ====
 +
Es wird <math>X := \{x_m : x_0 := \{\emptyset\}, x_{\omega} := \{x_1\}</math> und <math>x_{\acute{n}} := \{x_n\}</math> mit <math>m \in {}^{\omega}\mathbb{N}</math> und <math>n \in {}^{\omega}\mathbb{N}_{\ge 2}\}</math> gesetzt.<math>\square</math>
 +
 
 +
== Leseempfehlung ==
  
== Leseempfehlungen ==
 
 
[https://de.calameo.com/books/00377797710a3d3e2cb97 Nichtstandardmathematik]
 
[https://de.calameo.com/books/00377797710a3d3e2cb97 Nichtstandardmathematik]
  
 
[[en:Main Page]]
 
[[en:Main Page]]

Version vom 1. Juni 2021, 00:55 Uhr

Willkommen bei MWiki

Sätze des Monats

Universelles Mehrschrittverfahren

Mit [math]\displaystyle{ n \in {}^{\nu}\mathbb{N}_{\le p}, k, m, p \in {}^{\nu}\mathbb{N}^{*}, d_{\curvearrowright B} x \in\, ]0, 1[, x \in [a, b] \subseteq {}^{\omega}\mathbb{R}, y : [a, b] \rightarrow {}^{\omega}\mathbb{R}^q, f : [a, b] \times {}^{\omega}\mathbb{R}^{q \times n} \rightarrow {}^{\omega}\mathbb{R}^q, g_k(\curvearrowright B x) := g_{\acute{k}}(x) }[/math] und [math]\displaystyle{ g_0(a) = f((\curvearrowleft B)a, y_0, ... , y_{\acute{n}}) }[/math] ergibt die Taylorreihe des Anfangswertproblems [math]\displaystyle{ n }[/math]-ter Ordnung [math]\displaystyle{ y^\prime(x) = f(x, y((\curvearrowright B)^0 x), ... , y((\curvearrowright B)^{\acute{n}} x)) }[/math]

[math]\displaystyle{ y(\curvearrowright B x) = y(x) - d_{\curvearrowright B}x\sum\limits_{k=1}^{p}{i^{2k} g_{p-k}((\curvearrowright B) x)\sum\limits_{m=k}^{p}{\widehat{m!}\binom{\acute{m}}{\acute{k}}}} + \mathcal{O}((d_{\curvearrowright B} x)^{\grave{p}}).\square }[/math]

Satz von Goldbach

Jede gerade Zahl, die größer als 2 ist, ist Summe zweier Primzahlen.

Beweis:

Induktion über alle Primzahlabstände bis zum jeweils maximal möglichen.[math]\displaystyle{ \square }[/math]

Fundierungssatz

Erst die Forderung des Fundierungsaxioms, dass jede nichtleere Teilmenge [math]\displaystyle{ X \subseteq Y }[/math] ein Element [math]\displaystyle{ x_0 }[/math] enthält, sodass [math]\displaystyle{ X }[/math] und [math]\displaystyle{ x_0 }[/math] disjunkt sind, garantiert Zyklenfreiheit.

Beweis:

Es wird [math]\displaystyle{ X := \{x_m : x_0 := \{\emptyset\}, x_{\omega} := \{x_1\} }[/math] und [math]\displaystyle{ x_{\acute{n}} := \{x_n\} }[/math] mit [math]\displaystyle{ m \in {}^{\omega}\mathbb{N} }[/math] und [math]\displaystyle{ n \in {}^{\omega}\mathbb{N}_{\ge 2}\} }[/math] gesetzt.[math]\displaystyle{ \square }[/math]

Leseempfehlung

Nichtstandardmathematik