Hauptseite: Unterschied zwischen den Versionen

Aus MWiki
Wechseln zu: Navigation, Suche
(Größte-Primzahl-Kriterium und Transzendenz der Eulerschen Konstante)
(Satz von Green)
(32 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
 
__NOTOC__
 
__NOTOC__
 
= Willkommen bei MWiki =
 
= Willkommen bei MWiki =
== Sätze des Monats ==
+
== Satz des Monats ==
=== Größte-Primzahl-Kriterium ===
+
=== Satz von Green ===
Hat eine reelle Zahl bei gekürzten Brüchen die Darstellung <math>\widehat{ap}b \pm \hat{s}t</math> mit natürlichen <math>a, b, s</math> und <math>t, abst \ne 0</math> und <math>a + s &gt; 2</math> sowie der (zweit-) größten Primzahl <math>p \in {}^{\omega }\mathbb{P}, p \nmid b</math> und <math>p \nmid s</math>, so ist sie <math>\omega</math>-transzendent.
 
  
==== Beweis: ====
+
Für die Nachbarschaftsrelationen <math>B \subseteq {A}^{2}</math> mit einfach zusammenhängender <math>h</math>-Menge <math>A \subseteq {}^{(\omega)}\mathbb{R}^{2}</math>, infinitesimalem <math>h = |dBx|= |dBy| = |\curvearrowright B \gamma(t) - \gamma(t)| = \mathcal{O}({\hat{\omega}}^{m})</math>, hinreichend großem <math>m \in \mathbb{N}^{*}, (x, y) \in A,</math> <math>{A}^{-} := \{(x, y) \in A : (x + h, y + h) \in A\}</math>, einem geschlossenen, im Gegenuhrzeigersinn durchlaufenen Weg <math>\gamma: [a, b[\rightarrow \partial A</math> bei Wahl von <math>\curvearrowright B \gamma(t) = \gamma(\curvearrowright D t)</math> gilt mit <math>t \in [a, b[, D \subseteq {[a, b]}^{2}</math> und hinreichend <math>\alpha</math>-stetigen Funktionen <math>u, v: A \rightarrow \mathbb{R}</math> mit nicht notwendig stetigen partiellen Ableitungen <math>\partial Bu/\partial Bx, \partial Bu/\partial By, \partial Bv/\partial Bx</math> und <math>\partial Bv/\partial By</math><div style="text-align:center;"><math>\int\limits_{\gamma }{(u\,dBx+v\,dBy)}=\int\limits_{(x,y)\in {{A}^{-}}}{\left( \frac{\partial Bv}{\partial Bx}-\frac{\partial Bu}{\partial By} \right)dB(x,y)}.</math></div>
Der Nenner von <math>\widehat{aps} (bs \pm apt)</math> ist <math>\ge 2p \ge 2\omega - \mathcal{O}({_e}\omega\sqrt{\omega}) &gt; \omega</math> aufgrund des Primzahlsatzes.<math>\square </math>
 
 
 
=== Transzendenz der Eulerschen Konstante ===
 
Mit <math>s(x) := \sum\limits_{n=1}^{\omega}{\hat{n}{{x}^{n}}}</math> für <math>x \in {}^{\omega }{\mathbb{R}}</math> sei die Eulersche Konstante <math>\gamma := s(1) - {_e}\omega = \int\limits_{1}^{\omega}{\left( \widehat{\left\lfloor x \right\rfloor} - \hat{x} \right)dx}</math>, wobei Umsummieren <math>\gamma \in \; ]0, 1[</math> zeigt.
 
  
Wird <math>{_e}\omega = s(\hat{2})\;{_2}\omega</math> akzeptiert, so gilt <math>\gamma \in {}^{\omega }\mathbb{T}_{\mathbb{R}}</math> auf <math>\mathcal{O}({2}^{-\omega}\hat{\omega}\;{_e}\omega)</math> genau.
 
 
==== Beweis: ====
 
==== Beweis: ====
Die exakte Integration macht <math>-{_e}(-\acute{x}) = s(x) + \mathcal{O}(\hat{\omega}{x}^{\grave{\omega}}/\acute{x}) + t(x)dx</math> für <math>x \in [-1, 1 - \hat{\nu}]</math> und <math>t(x) \in {}^{\omega }{\mathbb{R}}</math> aus der geometrischen Reihe.
+
O. B. d. A. werde der Beweis nur für <math>A := \{(x, y) : r \le x \le s, f(x) \le y \le g(x)\}, r, s \in {}^{(\omega)}\mathbb{R}, f, g : \partial A \rightarrow {}^{(\omega)}\mathbb{R}</math> geführt, da er für das jeweils um <math>\iota</math> gedrehte Äquivalent analog verläuft und jede einfach zusammenhängende <math>h</math>-Menge eine Vereinigung solcher Mengen ist. Es wird nur<div style="text-align:center;"><math>\int\limits_{\gamma }{u\,dBx}=-\int\limits_{(x,y)\in {{A}^{-}}}{\frac{\partial Bu}{\partial By}dB(x,y)}</math></div>gezeigt, da sich die fehlende Beziehung analog ergibt. Da die Teile von <math>\gamma</math> mit <math>dBx = 0</math> zum Kurvenintegral nichts beitragen, gilt mit vernachlässigbarem <math>t := h(u(s, g(s)) - u(r, g(r)))</math><div style="text-align:center;"><math>-\int\limits_{\gamma }{u\,dBx}-t=\int\limits_{r}^{s}{u(x,g(x))dBx}-\int\limits_{r}^{s}{u(x,f(x))dBx}=\int\limits_{r}^{s}{\int\limits_{f(x)}^{g(x)}{\frac{\partial Bu}{\partial By}}dBydBx}=\int\limits_{(x,y)\in {{A}^{-}}}{\frac{\partial Bu}{\partial By}dB(x,y)}.\square</math></div>
  
Wird der kleine fermatsche Satz auf den Zähler von <math>\hat{p}(1 - 2^{-p}\,{_2}\omega)</math> für <math>p = \max \, {}^{\omega}\mathbb{P}</math> angewandt, liefert das Größte-Primzahl-Kriterium die Behauptung.<math>\square</math>
 
 
== Leseempfehlung ==
 
== Leseempfehlung ==
  

Version vom 30. April 2022, 22:22 Uhr

Willkommen bei MWiki

Satz des Monats

Satz von Green

Für die Nachbarschaftsrelationen [math]\displaystyle{ B \subseteq {A}^{2} }[/math] mit einfach zusammenhängender [math]\displaystyle{ h }[/math]-Menge [math]\displaystyle{ A \subseteq {}^{(\omega)}\mathbb{R}^{2} }[/math], infinitesimalem [math]\displaystyle{ h = |dBx|= |dBy| = |\curvearrowright B \gamma(t) - \gamma(t)| = \mathcal{O}({\hat{\omega}}^{m}) }[/math], hinreichend großem [math]\displaystyle{ m \in \mathbb{N}^{*}, (x, y) \in A, }[/math] [math]\displaystyle{ {A}^{-} := \{(x, y) \in A : (x + h, y + h) \in A\} }[/math], einem geschlossenen, im Gegenuhrzeigersinn durchlaufenen Weg [math]\displaystyle{ \gamma: [a, b[\rightarrow \partial A }[/math] bei Wahl von [math]\displaystyle{ \curvearrowright B \gamma(t) = \gamma(\curvearrowright D t) }[/math] gilt mit [math]\displaystyle{ t \in [a, b[, D \subseteq {[a, b]}^{2} }[/math] und hinreichend [math]\displaystyle{ \alpha }[/math]-stetigen Funktionen [math]\displaystyle{ u, v: A \rightarrow \mathbb{R} }[/math] mit nicht notwendig stetigen partiellen Ableitungen [math]\displaystyle{ \partial Bu/\partial Bx, \partial Bu/\partial By, \partial Bv/\partial Bx }[/math] und [math]\displaystyle{ \partial Bv/\partial By }[/math]

[math]\displaystyle{ \int\limits_{\gamma }{(u\,dBx+v\,dBy)}=\int\limits_{(x,y)\in {{A}^{-}}}{\left( \frac{\partial Bv}{\partial Bx}-\frac{\partial Bu}{\partial By} \right)dB(x,y)}. }[/math]

Beweis:

O. B. d. A. werde der Beweis nur für [math]\displaystyle{ A := \{(x, y) : r \le x \le s, f(x) \le y \le g(x)\}, r, s \in {}^{(\omega)}\mathbb{R}, f, g : \partial A \rightarrow {}^{(\omega)}\mathbb{R} }[/math] geführt, da er für das jeweils um [math]\displaystyle{ \iota }[/math] gedrehte Äquivalent analog verläuft und jede einfach zusammenhängende [math]\displaystyle{ h }[/math]-Menge eine Vereinigung solcher Mengen ist. Es wird nur

[math]\displaystyle{ \int\limits_{\gamma }{u\,dBx}=-\int\limits_{(x,y)\in {{A}^{-}}}{\frac{\partial Bu}{\partial By}dB(x,y)} }[/math]

gezeigt, da sich die fehlende Beziehung analog ergibt. Da die Teile von [math]\displaystyle{ \gamma }[/math] mit [math]\displaystyle{ dBx = 0 }[/math] zum Kurvenintegral nichts beitragen, gilt mit vernachlässigbarem [math]\displaystyle{ t := h(u(s, g(s)) - u(r, g(r))) }[/math]

[math]\displaystyle{ -\int\limits_{\gamma }{u\,dBx}-t=\int\limits_{r}^{s}{u(x,g(x))dBx}-\int\limits_{r}^{s}{u(x,f(x))dBx}=\int\limits_{r}^{s}{\int\limits_{f(x)}^{g(x)}{\frac{\partial Bu}{\partial By}}dBydBx}=\int\limits_{(x,y)\in {{A}^{-}}}{\frac{\partial Bu}{\partial By}dB(x,y)}.\square }[/math]

Leseempfehlung

Nichtstandardmathematik