Hauptseite: Unterschied zwischen den Versionen

Aus MWiki
Wechseln zu: Navigation, Suche
(EW-Verfahren)
(Satz von Green)
(28 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 2: Zeile 2:
 
= Willkommen bei MWiki =
 
= Willkommen bei MWiki =
 
== Satz des Monats ==
 
== Satz des Monats ==
=== EW-Verfahren ===
+
=== Satz von Green ===
Ist das lineare Gleichungssystems (LGS) <math>Ax = b \in  {}^{\nu}\mathbb{Q}^{n}</math> mit <math>n \in {}^{\nu}\mathbb{N}^*</math> eindeutig lösbar, berechnet das ''Einheitswurzelverfahren (EW-Verfahren)'' <math>x \in {}^{\nu}\mathbb{Q}^{n}</math> für <math>A \in {}^{\nu}\mathbb{Q}^{n \times n}</math> in <math>\mathcal{O}(n^2)</math>.
 
  
=== Beweis und Algorithmus ===
+
Für die Nachbarschaftsrelationen <math>B \subseteq {A}^{2}</math> mit einfach zusammenhängender <math>h</math>-Menge <math>A \subseteq {}^{(\omega)}\mathbb{R}^{2}</math>, infinitesimalem <math>h = |dBx|= |dBy| = |\curvearrowright B \gamma(t) - \gamma(t)| = \mathcal{O}({\hat{\omega}}^{m})</math>, hinreichend großem <math>m \in \mathbb{N}^{*}, (x, y) \in A,</math> <math>{A}^{-} := \{(x, y) \in A : (x + h, y + h) \in A\}</math>, einem geschlossenen, im Gegenuhrzeigersinn durchlaufenen Weg <math>\gamma: [a, b[\rightarrow \partial A</math> bei Wahl von <math>\curvearrowright B \gamma(t) = \gamma(\curvearrowright D t)</math> gilt mit <math>t \in [a, b[, D \subseteq {[a, b]}^{2}</math> und hinreichend <math>\alpha</math>-stetigen Funktionen <math>u, v: A \rightarrow \mathbb{R}</math> mit nicht notwendig stetigen partiellen Ableitungen <math>\partial Bu/\partial Bx, \partial Bu/\partial By, \partial Bv/\partial Bx</math> und <math>\partial Bv/\partial By</math><div style="text-align:center;"><math>\int\limits_{\gamma }{(u\,dBx+v\,dBy)}=\int\limits_{(x,y)\in {{A}^{-}}}{\left( \frac{\partial Bv}{\partial Bx}-\frac{\partial Bu}{\partial By} \right)dB(x,y)}.</math></div>
Seien <math>R_1 := (r_{1jk}) = (r_{1kj}) = R_1^T \in {}^{\nu}\mathbb{C}^{n \times n}, n \in {}^{\nu}2\mathbb{N}^*, r_{11k} := 1</math> und für <math>j &gt; 1</math> sowie <math>n_{jk} := j + k - 3</math> sowohl <math>r_{1jk} := \hat{n}e^{i\tau n_{jk}/n}</math> mit  <math>n_{jk} &lt; n</math> als auch <math>r_{1jk} := \hat{n}e^{i\tau(n_{jk} - \acute{n})/n}</math> mit <math>n_{jk} \ge n</math>. Durch Vertauschung der ersten Zeile bzw. Spalte mit der <math>j</math>-ten und entsprechender Vertauschung der übrigen Zeilen und Spalten entstehen die Matrizen <math>R_j = R_j^T</math> mit <math>j &gt; 1</math>. Es gilt offenbar rg<math>(R_j) = n</math> für alle <math>j</math>. Folgt <math>x_j = 1</math> für alle <math>j</math> aus <math>A(x - x^\prime) = (1 - x_j, ..., 1 - x_j)^T</math> und <math>Ax^\prime = b</math>, so ist höchstwahrscheinlich rg<math>(A) = n</math>.
 
  
Folgt <math>a_{jk} \le 0</math> für mindestens ein Paar <math>(j, k)</math> aus <math>A := (a_{jk})</math>, so werden die Summe <math>s_0 := \sum\limits_{j=1}^m{b_j\varepsilon^j}</math> mit einer beliebigen transzendenten Zahl <math>\varepsilon</math> und <math>s_k := \sum\limits_{j=1}^m{a_{jk}\varepsilon^j} \ne 0</math> für alle <math>k</math> gebildet. Für <math>s_k &lt; 0</math> wird <math>x_k</math> durch <math>-x_k</math> ersetzt. Dann wird ein Vielfaches von <math>s^Tx</math> bzw. <math>s_0</math> zu <math>Ax = b</math> addiert, sodass nunmehr <math>a_{jk} > 0</math> für alle <math>(j, k)</math> gilt. Mit <math>D_j := (d_{jk}), d_{jk} = \delta_{jk}/\prod\limits_{m=1}^n{a_{jm}}</math> und <math>C_j := D_j R_j = (c_{jk})</math> folgt <math>x_j^\prime = (AC_jx^\prime)_j = (C_jb)_j</math> für das Kronecker-Delta <math>\delta_{jk}</math>. Gilt jedoch <math>x_j^\prime = 0 \ne b_j</math> für ein <math>j</math>, ist das LGS nicht lösbar.<math>\square</math>
+
==== Beweis: ====
 +
O. B. d. A. werde der Beweis nur für <math>A := \{(x, y) : r \le x \le s, f(x) \le y \le g(x)\}, r, s \in {}^{(\omega)}\mathbb{R}, f, g : \partial A \rightarrow {}^{(\omega)}\mathbb{R}</math> geführt, da er für das jeweils um <math>\iota</math> gedrehte Äquivalent analog verläuft und jede einfach zusammenhängende <math>h</math>-Menge eine Vereinigung solcher Mengen ist. Es wird nur<div style="text-align:center;"><math>\int\limits_{\gamma }{u\,dBx}=-\int\limits_{(x,y)\in {{A}^{-}}}{\frac{\partial Bu}{\partial By}dB(x,y)}</math></div>gezeigt, da sich die fehlende Beziehung analog ergibt. Da die Teile von <math>\gamma</math> mit <math>dBx = 0</math> zum Kurvenintegral nichts beitragen, gilt mit vernachlässigbarem <math>t := h(u(s, g(s)) - u(r, g(r)))</math><div style="text-align:center;"><math>-\int\limits_{\gamma }{u\,dBx}-t=\int\limits_{r}^{s}{u(x,g(x))dBx}-\int\limits_{r}^{s}{u(x,f(x))dBx}=\int\limits_{r}^{s}{\int\limits_{f(x)}^{g(x)}{\frac{\partial Bu}{\partial By}}dBydBx}=\int\limits_{(x,y)\in {{A}^{-}}}{\frac{\partial Bu}{\partial By}dB(x,y)}.\square</math></div>
  
'''Bemerkung:''' Die Erweiterung auf komplexe Zahlen sowie über- bzw. unterbestimmte LGS ist einfach.
 
 
== Leseempfehlung ==
 
== Leseempfehlung ==
  

Version vom 30. April 2022, 22:22 Uhr

Willkommen bei MWiki

Satz des Monats

Satz von Green

Für die Nachbarschaftsrelationen [math]\displaystyle{ B \subseteq {A}^{2} }[/math] mit einfach zusammenhängender [math]\displaystyle{ h }[/math]-Menge [math]\displaystyle{ A \subseteq {}^{(\omega)}\mathbb{R}^{2} }[/math], infinitesimalem [math]\displaystyle{ h = |dBx|= |dBy| = |\curvearrowright B \gamma(t) - \gamma(t)| = \mathcal{O}({\hat{\omega}}^{m}) }[/math], hinreichend großem [math]\displaystyle{ m \in \mathbb{N}^{*}, (x, y) \in A, }[/math] [math]\displaystyle{ {A}^{-} := \{(x, y) \in A : (x + h, y + h) \in A\} }[/math], einem geschlossenen, im Gegenuhrzeigersinn durchlaufenen Weg [math]\displaystyle{ \gamma: [a, b[\rightarrow \partial A }[/math] bei Wahl von [math]\displaystyle{ \curvearrowright B \gamma(t) = \gamma(\curvearrowright D t) }[/math] gilt mit [math]\displaystyle{ t \in [a, b[, D \subseteq {[a, b]}^{2} }[/math] und hinreichend [math]\displaystyle{ \alpha }[/math]-stetigen Funktionen [math]\displaystyle{ u, v: A \rightarrow \mathbb{R} }[/math] mit nicht notwendig stetigen partiellen Ableitungen [math]\displaystyle{ \partial Bu/\partial Bx, \partial Bu/\partial By, \partial Bv/\partial Bx }[/math] und [math]\displaystyle{ \partial Bv/\partial By }[/math]

[math]\displaystyle{ \int\limits_{\gamma }{(u\,dBx+v\,dBy)}=\int\limits_{(x,y)\in {{A}^{-}}}{\left( \frac{\partial Bv}{\partial Bx}-\frac{\partial Bu}{\partial By} \right)dB(x,y)}. }[/math]

Beweis:

O. B. d. A. werde der Beweis nur für [math]\displaystyle{ A := \{(x, y) : r \le x \le s, f(x) \le y \le g(x)\}, r, s \in {}^{(\omega)}\mathbb{R}, f, g : \partial A \rightarrow {}^{(\omega)}\mathbb{R} }[/math] geführt, da er für das jeweils um [math]\displaystyle{ \iota }[/math] gedrehte Äquivalent analog verläuft und jede einfach zusammenhängende [math]\displaystyle{ h }[/math]-Menge eine Vereinigung solcher Mengen ist. Es wird nur

[math]\displaystyle{ \int\limits_{\gamma }{u\,dBx}=-\int\limits_{(x,y)\in {{A}^{-}}}{\frac{\partial Bu}{\partial By}dB(x,y)} }[/math]

gezeigt, da sich die fehlende Beziehung analog ergibt. Da die Teile von [math]\displaystyle{ \gamma }[/math] mit [math]\displaystyle{ dBx = 0 }[/math] zum Kurvenintegral nichts beitragen, gilt mit vernachlässigbarem [math]\displaystyle{ t := h(u(s, g(s)) - u(r, g(r))) }[/math]

[math]\displaystyle{ -\int\limits_{\gamma }{u\,dBx}-t=\int\limits_{r}^{s}{u(x,g(x))dBx}-\int\limits_{r}^{s}{u(x,f(x))dBx}=\int\limits_{r}^{s}{\int\limits_{f(x)}^{g(x)}{\frac{\partial Bu}{\partial By}}dBydBx}=\int\limits_{(x,y)\in {{A}^{-}}}{\frac{\partial Bu}{\partial By}dB(x,y)}.\square }[/math]

Leseempfehlung

Nichtstandardmathematik