Hauptseite: Unterschied zwischen den Versionen

Aus MWiki
Wechseln zu: Navigation, Suche
(Satz von Green)
(Universelles Mehrschrittverfahren)
Zeile 1: Zeile 1:
 
__NOTOC__
 
__NOTOC__
 
= Willkommen bei MWiki =
 
= Willkommen bei MWiki =
== Satz des Monats ==
+
== Sätze des Monats ==
=== Satz von Green ===
 
  
Für die Nachbarschaftsrelationen <math>B \subseteq {A}^{2}</math> mit einfach zusammenhängender <math>h</math>-Menge <math>A \subseteq {}^{(\omega)}\mathbb{R}^{2}</math>, infinitesimalem <math>h = |dBx|= |dBy| = |\curvearrowright B \gamma(t) - \gamma(t)| = \mathcal{O}({\hat{\omega}}^{m})</math>, hinreichend großem <math>m \in \mathbb{N}^{*}, (x, y) \in A,</math> <math>{A}^{-} := \{(x, y) \in A : (x + h, y + h) \in A\}</math>, einem geschlossenen, im Gegenuhrzeigersinn durchlaufenen Weg <math>\gamma: [a, b[\rightarrow \partial A</math> bei Wahl von <math>\curvearrowright B \gamma(t) = \gamma(\curvearrowright D t)</math> gilt mit <math>t \in [a, b[, D \subseteq {[a, b]}^{2}</math> und hinreichend <math>\alpha</math>-stetigen Funktionen <math>u, v: A \rightarrow \mathbb{R}</math> mit nicht notwendig stetigen partiellen Ableitungen <math>\partial Bu/\partial Bx, \partial Bu/\partial By, \partial Bv/\partial Bx</math> und <math>\partial Bv/\partial By</math><div style="text-align:center;"><math>\int\limits_{\gamma }{(u\,dBx+v\,dBy)}=\int\limits_{(x,y)\in {{A}^{-}}}{\left( \frac{\partial Bv}{\partial Bx}-\frac{\partial Bu}{\partial By} \right)dB(x,y)}.</math></div>
+
=== Universelles Mehrschrittverfahren ===
 +
 
 +
Mit <math>n \in {}^{\nu}\mathbb{N}_{\le p}, k, m, p \in {}^{\nu}\mathbb{N}^{*}, d_{\curvearrowright B} x \in\, ]0, 1[, x \in [a, b] \subseteq {}^{\omega}\mathbb{R}, y : [a, b] \rightarrow {}^{\omega}\mathbb{R}^q, f : [a, b] \times {}^{\omega}\mathbb{R}^{q \times n} \rightarrow {}^{\omega}\mathbb{R}^q, g_k(\curvearrowright B x) := g_{\acute{k}}(x)</math> und <math>g_0(a) = f((\curvearrowleft B)a, y_0, ... , y_{\acute{n}})</math> ergibt die Taylorreihe des Anfangswertproblems <math>n</math>-ter Ordnung <math>y^\prime(x) = f(x, y((\curvearrowright B)^0 x), ... , y((\curvearrowright B)^{\acute{n}} x))</math><div style="text-align:center;"><math>y(\curvearrowright B x) = y(x) - d_{\curvearrowright B}x\sum\limits_{k=1}^{p}{i^{2k} g_{p-k}((\curvearrowright B) x)\sum\limits_{m=k}^{p}{\widehat{m!}\binom{\acute{m}}{\acute{k}}}} + \mathcal{O}((d_{\curvearrowright B} x)^{\grave{p}}).\square</math></div>
 +
 
 +
=== Satz von Goldbach ===
 +
 
 +
Jede gerade Zahl, die größer als 2 ist, ist Summe zweier Primzahlen.
 +
 
 +
==== Beweis: ====
 +
Induktion über alle Primzahlabstände bis zum jeweils maximal möglichen.<math>\square</math>
 +
 
 +
=== Fundierungssatz ===
 +
 
 +
Erst die Forderung des Fundierungsaxioms, dass jede nichtleere Teilmenge <math>X \subseteq Y</math> ein Element <math>x_0</math> enthält, sodass <math>X</math> und <math>x_0</math> disjunkt sind, garantiert Zyklenfreiheit.
  
 
==== Beweis: ====
 
==== Beweis: ====
O. B. d. A. werde der Beweis nur für <math>A := \{(x, y) : r \le x \le s, f(x) \le y \le g(x)\}, r, s \in {}^{(\omega)}\mathbb{R}, f, g : \partial A \rightarrow {}^{(\omega)}\mathbb{R}</math> geführt, da er für das jeweils um <math>\iota</math> gedrehte Äquivalent analog verläuft und jede einfach zusammenhängende <math>h</math>-Menge eine Vereinigung solcher Mengen ist. Es wird nur<div style="text-align:center;"><math>\int\limits_{\gamma }{u\,dBx}=-\int\limits_{(x,y)\in {{A}^{-}}}{\frac{\partial Bu}{\partial By}dB(x,y)}</math></div>gezeigt, da sich die fehlende Beziehung analog ergibt. Da die Teile von <math>\gamma</math> mit <math>dBx = 0</math> zum Kurvenintegral nichts beitragen, gilt mit vernachlässigbarem <math>t := h(u(s, g(s)) - u(r, g(r)))</math><div style="text-align:center;"><math>-\int\limits_{\gamma }{u\,dBx}-t=\int\limits_{r}^{s}{u(x,g(x))dBx}-\int\limits_{r}^{s}{u(x,f(x))dBx}=\int\limits_{r}^{s}{\int\limits_{f(x)}^{g(x)}{\frac{\partial Bu}{\partial By}}dBydBx}=\int\limits_{(x,y)\in {{A}^{-}}}{\frac{\partial Bu}{\partial By}dB(x,y)}.\square</math></div>
+
Es wird <math>X := \{x_m : x_0 := \{\emptyset\}, x_{\omega} := \{x_1\}</math> und <math>x_{\acute{n}} := \{x_n\}</math> mit <math>m \in {}^{\omega}\mathbb{N}</math> und <math>n \in {}^{\omega}\mathbb{N}_{\ge 2}\}</math> gesetzt.<math>\square</math>
  
 
== Leseempfehlung ==
 
== Leseempfehlung ==

Version vom 1. Juni 2022, 03:44 Uhr

Willkommen bei MWiki

Sätze des Monats

Universelles Mehrschrittverfahren

Mit [math]\displaystyle{ n \in {}^{\nu}\mathbb{N}_{\le p}, k, m, p \in {}^{\nu}\mathbb{N}^{*}, d_{\curvearrowright B} x \in\, ]0, 1[, x \in [a, b] \subseteq {}^{\omega}\mathbb{R}, y : [a, b] \rightarrow {}^{\omega}\mathbb{R}^q, f : [a, b] \times {}^{\omega}\mathbb{R}^{q \times n} \rightarrow {}^{\omega}\mathbb{R}^q, g_k(\curvearrowright B x) := g_{\acute{k}}(x) }[/math] und [math]\displaystyle{ g_0(a) = f((\curvearrowleft B)a, y_0, ... , y_{\acute{n}}) }[/math] ergibt die Taylorreihe des Anfangswertproblems [math]\displaystyle{ n }[/math]-ter Ordnung [math]\displaystyle{ y^\prime(x) = f(x, y((\curvearrowright B)^0 x), ... , y((\curvearrowright B)^{\acute{n}} x)) }[/math]

[math]\displaystyle{ y(\curvearrowright B x) = y(x) - d_{\curvearrowright B}x\sum\limits_{k=1}^{p}{i^{2k} g_{p-k}((\curvearrowright B) x)\sum\limits_{m=k}^{p}{\widehat{m!}\binom{\acute{m}}{\acute{k}}}} + \mathcal{O}((d_{\curvearrowright B} x)^{\grave{p}}).\square }[/math]

Satz von Goldbach

Jede gerade Zahl, die größer als 2 ist, ist Summe zweier Primzahlen.

Beweis:

Induktion über alle Primzahlabstände bis zum jeweils maximal möglichen.[math]\displaystyle{ \square }[/math]

Fundierungssatz

Erst die Forderung des Fundierungsaxioms, dass jede nichtleere Teilmenge [math]\displaystyle{ X \subseteq Y }[/math] ein Element [math]\displaystyle{ x_0 }[/math] enthält, sodass [math]\displaystyle{ X }[/math] und [math]\displaystyle{ x_0 }[/math] disjunkt sind, garantiert Zyklenfreiheit.

Beweis:

Es wird [math]\displaystyle{ X := \{x_m : x_0 := \{\emptyset\}, x_{\omega} := \{x_1\} }[/math] und [math]\displaystyle{ x_{\acute{n}} := \{x_n\} }[/math] mit [math]\displaystyle{ m \in {}^{\omega}\mathbb{N} }[/math] und [math]\displaystyle{ n \in {}^{\omega}\mathbb{N}_{\ge 2}\} }[/math] gesetzt.[math]\displaystyle{ \square }[/math]

Leseempfehlung

Nichtstandardmathematik