Hauptseite: Unterschied zwischen den Versionen

Aus MWiki
Wechseln zu: Navigation, Suche
(Cauchyscher Integralsatz und Fundamentalsatz der Algebra)
Zeile 1: Zeile 1:
 
__NOTOC__
 
__NOTOC__
 
= Willkommen bei MWiki =
 
= Willkommen bei MWiki =
=== Cauchyscher Integralsatz ===
+
== Satz des Monats ==
 +
=== Leibnizsche Differentiationsregel ===
  
Für die Nachbarschaftsrelationen <math>B \subseteq {A}^{2}</math> und <math>D \subseteq [a, b]</math> mit einer einfach zusammenhängenden <math>h</math>-Menge <math>A \subseteq {}^{\omega}\mathbb{C}</math>, infinitesimalem <math>h</math> sowie einer holomorphen Funktion <math>f: A \rightarrow {}^{\omega}\mathbb{C}</math> und einem geschlossenen Weg <math>\gamma: [a, b[\rightarrow \partial A</math>, wenn <math>\curvearrowright B \gamma(t) = \gamma(\curvearrowright D t)</math> mit <math>t \in [a, b[</math> gewählt wird, gilt
+
Für <math>f: {}^{(\omega)}\mathbb{K}^{\grave{n}} \rightarrow {}^{(\omega)}\mathbb{K}, a, b: {}^{(\omega)}\mathbb{K}^{n} \rightarrow {}^{(\omega)}\mathbb{K}, \curvearrowright B x := {(s, {x}_{2}, ..., {x}_{n})}^{T}</math> und <math>s \in {}^{(\omega)}\mathbb{K} \setminus \{{x}_{1}\}</math> gilt bei Wahl von <math>\curvearrowright D a(x) = a(\curvearrowright B x)</math> und <math>\curvearrowright D b(x) = b(\curvearrowright B x)</math><div style="text-align:center;"><math>\tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}Dt} \right)={\uparrow}_{a(x)}^{b(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}Dt}+\tfrac{{\downarrow} b(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright Bx,b(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright Bx,a(x)).</math></div>
<div style="text-align:center;"><math>{\uparrow}_{\gamma }{f(z){\downarrow}Bz}=0.</math></div>
 
  
'''Beweis:''' Aufgrund der Cauchy-Riemannschen Differentialgleichungen und des Satzes von Green gilt mit <math>x := \text{Re} \, z, y := \text{Im} \, z, u := \text{Re} \, f, v := \text{Im} \, f</math> und <math>{A}^{-} := \{z \in A : z + h + ih \in A\}</math>
+
==== Beweis: ====
 +
<div style="text-align:center;"><math>\begin{aligned}\tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}Dt} \right) &={\left( {\uparrow}_{a(\curvearrowright Bx)}^{b(\curvearrowright Bx)}{f(\curvearrowright Bx,t){\downarrow}Dt}-{\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}Dt} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &={\left( {\uparrow}_{a(x)}^{b(x)}{(f(\curvearrowright Bx,t)-f(x,t)){\downarrow}Dt}+{\uparrow}_{b(x)}^{b(\curvearrowright Bx)}{f(\curvearrowright Bx,t){\downarrow}Dt}-{\uparrow}_{a(x)}^{a(\curvearrowright Bx)}{f(\curvearrowright Bx,t){\downarrow}Dt} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &={\uparrow}_{a(x)}^{b(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}Dt}+\tfrac{{\downarrow} b(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright Bx,b(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright Bx,a(x)).\square\end{aligned}</math></div>
  
<div style="text-align:center;"><math>{\uparrow}_{\gamma }{f(z){\downarrow}Bz}={\uparrow}_{\gamma }{\left( u+iv \right)\left( {\downarrow}Bx+i{\downarrow}By \right)}={\uparrow}_{z\in {{D}^{-}}}{\left( i\left( \tfrac{{\downarrow} Bu}{{\downarrow} Bx}-\tfrac{{\downarrow} Bv}{{\downarrow} By} \right)-\left( \tfrac{{\downarrow} Bv}{{\downarrow} Bx}+\tfrac{{\downarrow} Bu}{{\downarrow} By} \right) \right){\downarrow}B(x,y)}=0.\square</math></div>
+
=== Satz von Beal ===
 +
Für <math>a^m + b^n = c^k</math> mit <math>a, b, c \in \mathbb{N}^{*}</math> und <math>k, m, n \in \mathbb{N}_{\ge 3}</math> gilt ggT<math>(a, b, c) > 1.</math>
  
=== Fundamentalsatz der Algebra ===
+
==== Beweis: ====
 +
Mit <math>p \in {}^{\omega} \mathbb{P}</math> und <math>r, s \in {}^{\omega}\mathbb{Q}</math> führt der vorige Satz auf sämtliche nichttrivialen Darstellungen von <math>c^k > 1</math> als <math>(a^{m-r} + ib^{n-s})(a^r - ib^s) =c^k +i(a^rb^{n-s} - a^{m-r}b^s)</math>, wobei alle Beziehungen <math>a^{m-\hat{r}} = b^{n-\hat{s}}</math> dann <math>p \mid</math> ggT<math>(a, b, c)</math> sowie die Behauptung trotz gewisser (nicht-)rationaler <math>r</math> und <math>s</math> (Stetigkeit!) ergeben.<math>\square</math>
  
Jedes nicht-konstante Polynom <math>p \in {}^{(\omega)}\mathbb{C}</math> hat ein <math>z \in {}^{(\omega)}\mathbb{C}</math> mit <math>p(z) = 0</math>.
+
===Folgerung: ===
 +
Der vorige Satz ermöglicht einen unendlichen Abstieg wegen ggT<math>(a, b, c) > 1</math>, sodass <math>a^n + b^n = c^n</math> von keinem <math>n \in {}^{\omega}\mathbb{N}_{\ge 3}</math> für beliebige <math>a, b, c \in {}^{\omega}\mathbb{N}^{*}</math> erfüllt wird.<math>\square</math>
  
'''Indirekter Beweis:''' Eine affin-lineare Variablensubstitution erreicht <math>\widetilde{p(0)} \ne \mathcal{O}(\iota)</math>. Die Annahme von <math>p(z) \ne 0</math> für alle <math>z \in {}^{(\omega)}\mathbb{C}</math> ergibt für das holomorphe <math>f(z) := \widetilde{p(z)}</math> wegen <math>f(\tilde{\iota}) = \mathcal{O}(\iota)</math>.
+
== Leseempfehlung ==
  
Aufgrund der Mittelwertungleichung <math>|f(0)| \le {|f|}_{\gamma}</math> gilt mit <math>\gamma = \partial\mathbb{B}_{r}(0)</math> und beliebigem <math>r \in {}^{(\omega)}\mathbb{R}_{&gt;0}</math> also <math>f(0) = \mathcal{O}(\iota)</math> im Widerspruch zur Voraussetzung.<math>\square</math>
 
 
== Leseempfehlungen ==
 
 
[https://de.calameo.com/books/00377797710a3d3e2cb97 Nichtstandardmathematik]
 
[https://de.calameo.com/books/00377797710a3d3e2cb97 Nichtstandardmathematik]
  
 
[[en:Main Page]]
 
[[en:Main Page]]

Version vom 1. März 2023, 03:57 Uhr

Willkommen bei MWiki

Satz des Monats

Leibnizsche Differentiationsregel

Für [math]\displaystyle{ f: {}^{(\omega)}\mathbb{K}^{\grave{n}} \rightarrow {}^{(\omega)}\mathbb{K}, a, b: {}^{(\omega)}\mathbb{K}^{n} \rightarrow {}^{(\omega)}\mathbb{K}, \curvearrowright B x := {(s, {x}_{2}, ..., {x}_{n})}^{T} }[/math] und [math]\displaystyle{ s \in {}^{(\omega)}\mathbb{K} \setminus \{{x}_{1}\} }[/math] gilt bei Wahl von [math]\displaystyle{ \curvearrowright D a(x) = a(\curvearrowright B x) }[/math] und [math]\displaystyle{ \curvearrowright D b(x) = b(\curvearrowright B x) }[/math]

[math]\displaystyle{ \tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}Dt} \right)={\uparrow}_{a(x)}^{b(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}Dt}+\tfrac{{\downarrow} b(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright Bx,b(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright Bx,a(x)). }[/math]

Beweis:

[math]\displaystyle{ \begin{aligned}\tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}Dt} \right) &={\left( {\uparrow}_{a(\curvearrowright Bx)}^{b(\curvearrowright Bx)}{f(\curvearrowright Bx,t){\downarrow}Dt}-{\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}Dt} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &={\left( {\uparrow}_{a(x)}^{b(x)}{(f(\curvearrowright Bx,t)-f(x,t)){\downarrow}Dt}+{\uparrow}_{b(x)}^{b(\curvearrowright Bx)}{f(\curvearrowright Bx,t){\downarrow}Dt}-{\uparrow}_{a(x)}^{a(\curvearrowright Bx)}{f(\curvearrowright Bx,t){\downarrow}Dt} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &={\uparrow}_{a(x)}^{b(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}Dt}+\tfrac{{\downarrow} b(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright Bx,b(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright Bx,a(x)).\square\end{aligned} }[/math]

Satz von Beal

Für [math]\displaystyle{ a^m + b^n = c^k }[/math] mit [math]\displaystyle{ a, b, c \in \mathbb{N}^{*} }[/math] und [math]\displaystyle{ k, m, n \in \mathbb{N}_{\ge 3} }[/math] gilt ggT[math]\displaystyle{ (a, b, c) \gt 1. }[/math]

Beweis:

Mit [math]\displaystyle{ p \in {}^{\omega} \mathbb{P} }[/math] und [math]\displaystyle{ r, s \in {}^{\omega}\mathbb{Q} }[/math] führt der vorige Satz auf sämtliche nichttrivialen Darstellungen von [math]\displaystyle{ c^k \gt 1 }[/math] als [math]\displaystyle{ (a^{m-r} + ib^{n-s})(a^r - ib^s) =c^k +i(a^rb^{n-s} - a^{m-r}b^s) }[/math], wobei alle Beziehungen [math]\displaystyle{ a^{m-\hat{r}} = b^{n-\hat{s}} }[/math] dann [math]\displaystyle{ p \mid }[/math] ggT[math]\displaystyle{ (a, b, c) }[/math] sowie die Behauptung trotz gewisser (nicht-)rationaler [math]\displaystyle{ r }[/math] und [math]\displaystyle{ s }[/math] (Stetigkeit!) ergeben.[math]\displaystyle{ \square }[/math]

Folgerung:

Der vorige Satz ermöglicht einen unendlichen Abstieg wegen ggT[math]\displaystyle{ (a, b, c) \gt 1 }[/math], sodass [math]\displaystyle{ a^n + b^n = c^n }[/math] von keinem [math]\displaystyle{ n \in {}^{\omega}\mathbb{N}_{\ge 3} }[/math] für beliebige [math]\displaystyle{ a, b, c \in {}^{\omega}\mathbb{N}^{*} }[/math] erfüllt wird.[math]\displaystyle{ \square }[/math]

Leseempfehlung

Nichtstandardmathematik