Hauptseite: Unterschied zwischen den Versionen

Aus MWiki
Wechseln zu: Navigation, Suche
(Primzahlsatz)
(Satz von Green)
(17 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 2: Zeile 2:
 
= Willkommen bei MWiki =
 
= Willkommen bei MWiki =
 
== Satz des Monats ==
 
== Satz des Monats ==
=== Primzahlsatz ===
+
=== Satz von Green ===
  
Für <math>\pi(x) := |\{p \in {}^{\omega}{\mathbb{P}} : p \le x \in {}^{\omega}{\mathbb{R}}\}|</math> gilt <math>\pi(\omega) = \widetilde{{_e}\omega}\omega + \mathcal{O}({_e}\omega{\omega}^{\tilde{2}})</math>.
+
Mit <math>h</math>-Gebiet <math>D \subseteq {}^{(\omega)}\mathbb{R}^{2}</math>, infinitesimalem <math>h = |{\downarrow}x|= |{\downarrow}y| = |{}^\curvearrowright \gamma(t) - \gamma(t)| = \mathcal{O}({\tilde{\omega}}^{m})</math>, hinreichend großem <math>m \in \mathbb{N}^{*}, (x, y) \in D, {D}^{-} := \{(x, y) \in D : (x + h, y + h) \in D\}</math>, einem geschlossenen, im Gegenuhrzeigersinn durchlaufenen Weg <math>\gamma: [a, b[\rightarrow \partial D</math> bei Wahl von <math>{}^\curvearrowright \gamma(t) = \gamma({}^\curvearrowright t)</math> gilt mit <math>t \in [a, b[, A \subseteq {[a, b]}^{2}</math> und hinreichend <math>\alpha</math>-stetigen Funktionen <math>u, v: D \rightarrow \mathbb{R}</math> mit ggf. nicht stetigen Ableitungen <math>{\downarrow} u/{\downarrow} x, {\downarrow} u/{\downarrow} y, {\downarrow} v/{\downarrow} x</math> und <math>{\downarrow} v/{\downarrow} y</math><div style="text-align:center;"><math>{\uparrow}_{\gamma }{(u\,{\downarrow}x+v\,{\downarrow}y)}={\uparrow}_{(x,y)\in {{D}^{-}}}{\left( \tfrac{{\downarrow} v}{{\downarrow} x}-\tfrac{{\downarrow} u}{{\downarrow} y} \right){\downarrow}(x,y)}.</math></div>
  
 
==== Beweis: ====
 
==== Beweis: ====
Im Sieb des Eratosthenes nehmen die Primzahlanzahlen nahezu regelmäßig ab. Aus Intervallen fester Länge <math>y \in {}^{\omega}{\mathbb{R}_{&gt;0}}</math> lassen sich <math>\hat{y}</math> Mengen-2-Tupel von Primzahlen so bilden, dass das erste Intervall eine unveränderte repräsentative Primzahldichte hat und das zweite Intervall leer ist, dann auf ein Intervall mit den zweitmeisten eines mit den zweitwenigsten Primzahlen folgt usw.
+
Der Beweis wird nur für <math>D := \{(x, y) : r \le x \le s, f(x) \le y \le g(x)\}, r, s \in {}^{(\omega)}\mathbb{R}, f, g : \partial D \rightarrow {}^{(\omega)}\mathbb{R}</math> geführt, da das jeweils um <math>\check{\pi}</math> gedrehte Äquivalent analog resultiert mit jedem <math>h</math>-Gebiet als Vereinigung solcher Mengen. Da sich die fehlende Beziehung analog ergibt, beschränkt sich die Betrachtung auf <div style="text-align:center;"><math>{\uparrow}_{\gamma }{u\,{\downarrow}x}=-{\uparrow}_{(x,y)\in {{D}^{-}}}{\tfrac{{\downarrow} u}{{\downarrow} y}{\downarrow}(x,y)}.</math></div> Unter Vernachlässigung der Teile von <math>\gamma</math> mit <math>{\downarrow}x = 0</math> zum Kurvenintegral wie von <math>t := h(u(s, g(s)) - u(r, g(r)))</math> gilt<div style="text-align:center;"><math>-{\uparrow}_{\gamma }{u\,{\downarrow}x}-t={\uparrow}_{r}^{s}{u(x,g(x)){\downarrow}x}-{\uparrow}_{r}^{s}{u(x,f(x)){\downarrow}x}={\uparrow}_{r}^{s}{{\uparrow}_{f(x)}^{g(x)}{\tfrac{{\downarrow} u}{{\downarrow} y}}{\downarrow}y{\downarrow}x}={\uparrow}_{(x,y)\in {{D}^{-}}}{\tfrac{{\downarrow} u}{{\downarrow} y}{\downarrow}(x,y)}.\square</math></div>
 
 
Ist mit Induktionsanfang <math>n</math> = 2 bzw. 3 die Induktionsannahme, dass mit <math>n \in {}^{\omega}{\mathbb{N}_{\ge2}}</math> und beliebigem <math>x_4 \in [2, 4[</math> das erste Intervall <math>x_n/{_e}x_n</math> Primzahlen enthält, so beweist die Betrachtung der Primzahllücken von primen <math>p\# /q + 1</math> mit <math>p, q \in {}^{\omega}\mathbb{P}</math> im Induktionsschritt von <math>x_n</math> nach <math>x_n^2</math>, dass sich dann <math>\pi(x_n^2) = \pi(x_n) \check{x}_n</math> Primzahlen nur aus <math>\pi(x_n) = x_n/{_e}x_n</math> ergeben. Der durchschnittliche Primzahlabstand beträgt <math>{_e}x_n</math> und die maximale Entsprechung von <math>x_n^2</math> zu <math>x_n</math> ist <math>\omega</math> zu <math>{\omega}^{\tilde{2}}.\square</math>
 
  
 
== Leseempfehlung ==
 
== Leseempfehlung ==

Version vom 1. Mai 2023, 03:25 Uhr

Willkommen bei MWiki

Satz des Monats

Satz von Green

Mit [math]\displaystyle{ h }[/math]-Gebiet [math]\displaystyle{ D \subseteq {}^{(\omega)}\mathbb{R}^{2} }[/math], infinitesimalem [math]\displaystyle{ h = |{\downarrow}x|= |{\downarrow}y| = |{}^\curvearrowright \gamma(t) - \gamma(t)| = \mathcal{O}({\tilde{\omega}}^{m}) }[/math], hinreichend großem [math]\displaystyle{ m \in \mathbb{N}^{*}, (x, y) \in D, {D}^{-} := \{(x, y) \in D : (x + h, y + h) \in D\} }[/math], einem geschlossenen, im Gegenuhrzeigersinn durchlaufenen Weg [math]\displaystyle{ \gamma: [a, b[\rightarrow \partial D }[/math] bei Wahl von [math]\displaystyle{ {}^\curvearrowright \gamma(t) = \gamma({}^\curvearrowright t) }[/math] gilt mit [math]\displaystyle{ t \in [a, b[, A \subseteq {[a, b]}^{2} }[/math] und hinreichend [math]\displaystyle{ \alpha }[/math]-stetigen Funktionen [math]\displaystyle{ u, v: D \rightarrow \mathbb{R} }[/math] mit ggf. nicht stetigen Ableitungen [math]\displaystyle{ {\downarrow} u/{\downarrow} x, {\downarrow} u/{\downarrow} y, {\downarrow} v/{\downarrow} x }[/math] und [math]\displaystyle{ {\downarrow} v/{\downarrow} y }[/math]

[math]\displaystyle{ {\uparrow}_{\gamma }{(u\,{\downarrow}x+v\,{\downarrow}y)}={\uparrow}_{(x,y)\in {{D}^{-}}}{\left( \tfrac{{\downarrow} v}{{\downarrow} x}-\tfrac{{\downarrow} u}{{\downarrow} y} \right){\downarrow}(x,y)}. }[/math]

Beweis:

Der Beweis wird nur für [math]\displaystyle{ D := \{(x, y) : r \le x \le s, f(x) \le y \le g(x)\}, r, s \in {}^{(\omega)}\mathbb{R}, f, g : \partial D \rightarrow {}^{(\omega)}\mathbb{R} }[/math] geführt, da das jeweils um [math]\displaystyle{ \check{\pi} }[/math] gedrehte Äquivalent analog resultiert mit jedem [math]\displaystyle{ h }[/math]-Gebiet als Vereinigung solcher Mengen. Da sich die fehlende Beziehung analog ergibt, beschränkt sich die Betrachtung auf

[math]\displaystyle{ {\uparrow}_{\gamma }{u\,{\downarrow}x}=-{\uparrow}_{(x,y)\in {{D}^{-}}}{\tfrac{{\downarrow} u}{{\downarrow} y}{\downarrow}(x,y)}. }[/math]

Unter Vernachlässigung der Teile von [math]\displaystyle{ \gamma }[/math] mit [math]\displaystyle{ {\downarrow}x = 0 }[/math] zum Kurvenintegral wie von [math]\displaystyle{ t := h(u(s, g(s)) - u(r, g(r))) }[/math] gilt

[math]\displaystyle{ -{\uparrow}_{\gamma }{u\,{\downarrow}x}-t={\uparrow}_{r}^{s}{u(x,g(x)){\downarrow}x}-{\uparrow}_{r}^{s}{u(x,f(x)){\downarrow}x}={\uparrow}_{r}^{s}{{\uparrow}_{f(x)}^{g(x)}{\tfrac{{\downarrow} u}{{\downarrow} y}}{\downarrow}y{\downarrow}x}={\uparrow}_{(x,y)\in {{D}^{-}}}{\tfrac{{\downarrow} u}{{\downarrow} y}{\downarrow}(x,y)}.\square }[/math]

Leseempfehlung

Nichtstandardmathematik