Hauptseite: Unterschied zwischen den Versionen

Aus MWiki
Wechseln zu: Navigation, Suche
(Intexverfahren)
(Satz von Green)
(12 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 2: Zeile 2:
 
= Willkommen bei MWiki =
 
= Willkommen bei MWiki =
 
== Satz des Monats ==
 
== Satz des Monats ==
Das Intexverfahren löst jedes lösbare LP in <math>\mathcal{O}({\vartheta}^3)</math>.
+
=== Satz von Green ===
  
== Beweis und Algorithmus ==
+
Mit <math>h</math>-Gebiet <math>D \subseteq {}^{(\omega)}\mathbb{R}^{2}</math>, infinitesimalem <math>h = |{\downarrow}x|= |{\downarrow}y| = |{}^\curvearrowright \gamma(t) - \gamma(t)| = \mathcal{O}({\tilde{\omega}}^{m})</math>, hinreichend großem <math>m \in \mathbb{N}^{*}, (x, y) \in D, {D}^{-} := \{(x, y) \in D : (x + h, y + h) \in D\}</math>, einem geschlossenen, im Gegenuhrzeigersinn durchlaufenen Weg <math>\gamma: [a, b[\rightarrow \partial D</math> bei Wahl von <math>{}^\curvearrowright \gamma(t) = \gamma({}^\curvearrowright t)</math> gilt mit <math>t \in [a, b[, A \subseteq {[a, b]}^{2}</math> und hinreichend <math>\alpha</math>-stetigen Funktionen <math>u, v: D \rightarrow \mathbb{R}</math> mit ggf. nicht stetigen Ableitungen <math>{\downarrow} u/{\downarrow} x, {\downarrow} u/{\downarrow} y, {\downarrow} v/{\downarrow} x</math> und <math>{\downarrow} v/{\downarrow} y</math><div style="text-align:center;"><math>{\uparrow}_{\gamma }{(u\,{\downarrow}x+v\,{\downarrow}y)}={\uparrow}_{(x,y)\in {{D}^{-}}}{\left( \tfrac{{\downarrow} v}{{\downarrow} x}-\tfrac{{\downarrow} u}{{\downarrow} y} \right){\downarrow}(x,y)}.</math></div>
Sei <math>z := m + n</math> und <math>d \in [0, 1]</math> die Dichte von <math>A</math>. Zuerst werden <math>{b}^{T}y - {c}^{T}x \le 0, Ax \le b</math> sowie <math>{A}^{T}y \ge c</math> normiert und skaliert. <math>P_r := \{(x, y)^T \in {}^{\omega}\mathbb{R}_{\ge 0}^{z} : {b}^{T}y - {c}^{T}x \le r \in [0, \breve{r}], Ax - b \le \underline{r}_m, c - {A}^{T}y \le \underline{r}_n\}</math> habe den Radius <math>\breve{r} := s|\min \; \{b_1, ..., b_m, -c_1, ..., -c_n\}|</math> und den Skalierungsfaktor <math>s \in [1, 2]</math>. Es folgt <math>\underline{0}_{z} \in \partial P_{\breve{r}}</math>. Nach dem starken Dualitätssatz löst das LP min <math>\{ r \in [0, \breve{r}] : (x, y)^T \in P_r\}</math> ebenso die LPs max <math>\{{c}^{T}x : c \in {}^{\omega}\mathbb{R}^{n}, x \in {P}_{\ge 0}\}</math> und min <math>\{{b}^{T}y : y \in {}^{\omega}\mathbb{R}_{\ge 0}^{m}, {A}^{T}y \ge c\}</math>.
 
  
Seine Lösung ist der geometrische Schwerpunkt <math>g</math> des Polytops <math>P_0</math>. Mit <math>p_k^* := \text{min}\,\check{p}_k + \text{max}\,\check{p}_k</math> für <math>k = 1, ..., \grave{z}</math> wird <math>g</math> durch <math>p_0 := (x_0, y_0, r_0)^T</math> approximiert, bis <math>||\Delta p||_1</math> hinreichend klein ist. Die Lösung <math>t^o(x^o, y^o, r^o)^T</math> des zweidimensionalen LPs min <math>\{ r \in [0, \breve{r}] : t \in {}^{\omega}\mathbb{R}_{> 0}, t(x_0, y_0)^T \in P_r\}</math> approximiert <math>g</math> besser und erreicht <math>r \le \hat{2}\breve{r}</math>. Dies wird mit <math>t^o(x^o, y^o)^T</math> wiederholt, bis ggf. <math>g \in P_0</math> in <math>\mathcal{O}({}_2\breve{r}^2dmn)</math> berechnet ist.
+
==== Beweis: ====
 +
Der Beweis wird nur für <math>D := \{(x, y) : r \le x \le s, f(x) \le y \le g(x)\}, r, s \in {}^{(\omega)}\mathbb{R}, f, g : \partial D \rightarrow {}^{(\omega)}\mathbb{R}</math> geführt, da das jeweils um <math>\check{\pi}</math> gedrehte Äquivalent analog resultiert mit jedem <math>h</math>-Gebiet als Vereinigung solcher Mengen. Da sich die fehlende Beziehung analog ergibt, beschränkt sich die Betrachtung auf <div style="text-align:center;"><math>{\uparrow}_{\gamma }{u\,{\downarrow}x}=-{\uparrow}_{(x,y)\in {{D}^{-}}}{\tfrac{{\downarrow} u}{{\downarrow} y}{\downarrow}(x,y)}.</math></div> Unter Vernachlässigung der Teile von <math>\gamma</math> mit <math>{\downarrow}x = 0</math> zum Kurvenintegral wie von <math>t := h(u(s, g(s)) - u(r, g(r)))</math> gilt<div style="text-align:center;"><math>-{\uparrow}_{\gamma }{u\,{\downarrow}x}-t={\uparrow}_{r}^{s}{u(x,g(x)){\downarrow}x}-{\uparrow}_{r}^{s}{u(x,f(x)){\downarrow}x}={\uparrow}_{r}^{s}{{\uparrow}_{f(x)}^{g(x)}{\tfrac{{\downarrow} u}{{\downarrow} y}}{\downarrow}y{\downarrow}x}={\uparrow}_{(x,y)\in {{D}^{-}}}{\tfrac{{\downarrow} u}{{\downarrow} y}{\downarrow}(x,y)}.\square</math></div>
  
Das Lösen aller zweidimensionalen LPs <math>\text{min}_k r_k</math> durch Bisektionsverfahren für <math>r_k \in {}^{\omega}\mathbb{R}_{\ge 0}</math> und <math>k = 1, ..., z</math> in jeweils <math>\mathcal{O}({\vartheta}^2)</math> ermittelt <math>q \in {}^{\omega}\mathbb{R}^k</math> mit <math>q_k := \Delta p_k \Delta r_k/r</math> und <math>r := \text{min}_k \Delta r_k</math>. Vereinfacht sei <math>|\Delta p_1| = … = |\Delta p_{z}|</math>. Hierbei wäre min <math>r_{\grave{z}}</math> für <math>p^* := p + wq</math> mit <math>w \in {}^{\omega}\mathbb{R}_{\ge 0}</math> ebenso zu lösen. Folgt <math>\text{min}_k \Delta r_k r = 0</math>, wird die Berechnung gestoppt, andernfalls wiederholt bis min <math>r = 0</math> oder min <math>r > 0</math> feststeht.<math>\square</math>
+
== Leseempfehlung ==
  
== Leseempfehlung ==
 
 
[https://de.calameo.com/books/00377797710a3d3e2cb97 Nichtstandardmathematik]
 
[https://de.calameo.com/books/00377797710a3d3e2cb97 Nichtstandardmathematik]
 
[[en:Main Page]]
 
  
 
[[en:Main Page]]
 
[[en:Main Page]]

Version vom 1. Mai 2023, 03:25 Uhr

Willkommen bei MWiki

Satz des Monats

Satz von Green

Mit [math]\displaystyle{ h }[/math]-Gebiet [math]\displaystyle{ D \subseteq {}^{(\omega)}\mathbb{R}^{2} }[/math], infinitesimalem [math]\displaystyle{ h = |{\downarrow}x|= |{\downarrow}y| = |{}^\curvearrowright \gamma(t) - \gamma(t)| = \mathcal{O}({\tilde{\omega}}^{m}) }[/math], hinreichend großem [math]\displaystyle{ m \in \mathbb{N}^{*}, (x, y) \in D, {D}^{-} := \{(x, y) \in D : (x + h, y + h) \in D\} }[/math], einem geschlossenen, im Gegenuhrzeigersinn durchlaufenen Weg [math]\displaystyle{ \gamma: [a, b[\rightarrow \partial D }[/math] bei Wahl von [math]\displaystyle{ {}^\curvearrowright \gamma(t) = \gamma({}^\curvearrowright t) }[/math] gilt mit [math]\displaystyle{ t \in [a, b[, A \subseteq {[a, b]}^{2} }[/math] und hinreichend [math]\displaystyle{ \alpha }[/math]-stetigen Funktionen [math]\displaystyle{ u, v: D \rightarrow \mathbb{R} }[/math] mit ggf. nicht stetigen Ableitungen [math]\displaystyle{ {\downarrow} u/{\downarrow} x, {\downarrow} u/{\downarrow} y, {\downarrow} v/{\downarrow} x }[/math] und [math]\displaystyle{ {\downarrow} v/{\downarrow} y }[/math]

[math]\displaystyle{ {\uparrow}_{\gamma }{(u\,{\downarrow}x+v\,{\downarrow}y)}={\uparrow}_{(x,y)\in {{D}^{-}}}{\left( \tfrac{{\downarrow} v}{{\downarrow} x}-\tfrac{{\downarrow} u}{{\downarrow} y} \right){\downarrow}(x,y)}. }[/math]

Beweis:

Der Beweis wird nur für [math]\displaystyle{ D := \{(x, y) : r \le x \le s, f(x) \le y \le g(x)\}, r, s \in {}^{(\omega)}\mathbb{R}, f, g : \partial D \rightarrow {}^{(\omega)}\mathbb{R} }[/math] geführt, da das jeweils um [math]\displaystyle{ \check{\pi} }[/math] gedrehte Äquivalent analog resultiert mit jedem [math]\displaystyle{ h }[/math]-Gebiet als Vereinigung solcher Mengen. Da sich die fehlende Beziehung analog ergibt, beschränkt sich die Betrachtung auf

[math]\displaystyle{ {\uparrow}_{\gamma }{u\,{\downarrow}x}=-{\uparrow}_{(x,y)\in {{D}^{-}}}{\tfrac{{\downarrow} u}{{\downarrow} y}{\downarrow}(x,y)}. }[/math]

Unter Vernachlässigung der Teile von [math]\displaystyle{ \gamma }[/math] mit [math]\displaystyle{ {\downarrow}x = 0 }[/math] zum Kurvenintegral wie von [math]\displaystyle{ t := h(u(s, g(s)) - u(r, g(r))) }[/math] gilt

[math]\displaystyle{ -{\uparrow}_{\gamma }{u\,{\downarrow}x}-t={\uparrow}_{r}^{s}{u(x,g(x)){\downarrow}x}-{\uparrow}_{r}^{s}{u(x,f(x)){\downarrow}x}={\uparrow}_{r}^{s}{{\uparrow}_{f(x)}^{g(x)}{\tfrac{{\downarrow} u}{{\downarrow} y}}{\downarrow}y{\downarrow}x}={\uparrow}_{(x,y)\in {{D}^{-}}}{\tfrac{{\downarrow} u}{{\downarrow} y}{\downarrow}(x,y)}.\square }[/math]

Leseempfehlung

Nichtstandardmathematik