Hauptseite: Unterschied zwischen den Versionen

Aus MWiki
Wechseln zu: Navigation, Suche
(Darstellungssatz für Ableitungen)
(Satz von Green)
(Eine dazwischenliegende Version desselben Benutzers wird nicht angezeigt)
Zeile 1: Zeile 1:
 
__NOTOC__
 
__NOTOC__
 
= Willkommen bei MWiki =
 
= Willkommen bei MWiki =
== Sätze des Monats ==
+
== Satz des Monats ==
=== Definition ===
+
=== Satz von Green ===
  
Seien <math>f_n^*(z) = f(\eta_nz)</math> die <em>Schwestern</em> zur Taylorreihe <math>f(z) \in \mathcal{O}(D)</math> um 0 auf dem Gebiet <math>D \subseteq {}^{\omega}\mathbb{C}</math> mit <math>m, n \in {}^{\omega}\mathbb{N}^{*}</math> und <math>\eta_n^m := i^{2^{\lceil m/n \rceil}}</math> sowie <math>\delta_n^*f = (f - f_n^*)/2</math> die <em>halben Schwesterabstände</em> von <math>f</math>. Mit <math>\mu_n^m := m!n!/(m + n)!</math> bilden <math>\mu</math> und <math>\eta</math> einen eigenen auf Ebene der Taylorreihen auflösbaren Kalkül, der eine einfache und endliche geschlossene Darstellung von Integralen und Ableitungen erlaubt.<math>\triangle</math>
+
Mit <math>h</math>-Gebiet <math>D \subseteq {}^{(\omega)}\mathbb{R}^{2}</math>, infinitesimalem <math>h = |{\downarrow}x|= |{\downarrow}y| = |{}^\curvearrowright \gamma(t) - \gamma(t)| = \mathcal{O}({\tilde{\omega}}^{m})</math>, hinreichend großem <math>m \in \mathbb{N}^{*}, (x, y) \in D, {D}^{-} := \{(x, y) \in D : (x + h, y + h) \in D\}</math>, einem geschlossenen, im Gegenuhrzeigersinn durchlaufenen Weg <math>\gamma: [a, b[\rightarrow \partial D</math> bei Wahl von <math>{}^\curvearrowright \gamma(t) = \gamma({}^\curvearrowright t)</math> gilt mit <math>t \in [a, b[, A \subseteq {[a, b]}^{2}</math> und hinreichend <math>\alpha</math>-stetigen Funktionen <math>u, v: D \rightarrow \mathbb{R}</math> mit ggf. nicht stetigen Ableitungen <math>{\downarrow} u/{\downarrow} x, {\downarrow} u/{\downarrow} y, {\downarrow} v/{\downarrow} x</math> und <math>{\downarrow} v/{\downarrow} y</math><div style="text-align:center;"><math>{\uparrow}_{\gamma }{(u\,{\downarrow}x+v\,{\downarrow}y)}={\uparrow}_{(x,y)\in {{D}^{-}}}{\left( \tfrac{{\downarrow} v}{{\downarrow} x}-\tfrac{{\downarrow} u}{{\downarrow} y} \right){\downarrow}(x,y)}.</math></div>
 
 
=== Darstellungssatz für Integrale ===
 
 
 
Die Taylorreihe (s. u.) <math>f(z) \in \mathcal{O}(D)</math> um 0 auf <math>D \subseteq {}^{\omega}\mathbb{C}</math> ergibt mit <math>\grave{m}, n \in {}^{\omega}\mathbb{N}^*</math><div style="text-align:center;"><math>{\uparrow}_0^z...{\uparrow}_0^{\zeta_2}{f(\zeta_1){\downarrow}\zeta_1\;...\;{\downarrow}\zeta_n} = \widetilde{n!} f(z\mu_n) z^n.\square</math></div>
 
 
 
=== Darstellungssatz für Ableitungen ===
 
 
 
Mit <math>\mathbb{B}_{\hat{\nu}}(0) \subset  D \subseteq {}^{\omega}\mathbb{C}</math> ergeben die Taylorreihe<div style="text-align:center;"><math>f(z):=f(0) + {+}_{m=1}^{\omega }{\widetilde{m!}\,{{f}^{(m)}}(0){z^m}},</math></div><math>b_{\varepsilon n} := \hat{\varepsilon}\,\acute{n}! = 2^j, j, n \in {}^{\omega}\mathbb{N}^{*}, \varepsilon \in ]0, r^n[, {{d}_{\varepsilon k n}}:={{\varepsilon}^{{\hat{n}}}}{e}^{\hat{n}k\tau i}</math> und der Konvergenzradius <math>r \in {}^{\nu}{\mathbb{R}}_{&gt;0}</math> von <math>f</math><div style="text-align:center;"><math>{{f}^{(n)}}(0)=b_n{+}_{k=1}^{n}{\delta_n^* f(\varepsilon u^k)}.</math></div>
 
  
 
==== Beweis: ====
 
==== Beweis: ====
Satz von Taylor<ref name="Remmert">[[w:Reinhold Remmert|<span class="wikipedia">Remmert, Reinhold</span>]]: ''Funktionentheorie 1'' : 3., verb. Aufl.; 1992; Springer; Berlin; ISBN 9783540552338, S. 165 f.</ref> und die Eigenschaften der Einheitswurzeln.<math>\square</math>
+
Der Beweis wird nur für <math>D := \{(x, y) : r \le x \le s, f(x) \le y \le g(x)\}, r, s \in {}^{(\omega)}\mathbb{R}, f, g : \partial D \rightarrow {}^{(\omega)}\mathbb{R}</math> geführt, da das jeweils um <math>\check{\pi}</math> gedrehte Äquivalent analog resultiert mit jedem <math>h</math>-Gebiet als Vereinigung solcher Mengen. Da sich die fehlende Beziehung analog ergibt, beschränkt sich die Betrachtung auf <div style="text-align:center;"><math>{\uparrow}_{\gamma }{u\,{\downarrow}x}=-{\uparrow}_{(x,y)\in {{D}^{-}}}{\tfrac{{\downarrow} u}{{\downarrow} y}{\downarrow}(x,y)}.</math></div> Unter Vernachlässigung der Teile von <math>\gamma</math> mit <math>{\downarrow}x = 0</math> zum Kurvenintegral wie von <math>t := h(u(s, g(s)) - u(r, g(r)))</math> gilt<div style="text-align:center;"><math>-{\uparrow}_{\gamma }{u\,{\downarrow}x}-t={\uparrow}_{r}^{s}{u(x,g(x)){\downarrow}x}-{\uparrow}_{r}^{s}{u(x,f(x)){\downarrow}x}={\uparrow}_{r}^{s}{{\uparrow}_{f(x)}^{g(x)}{\tfrac{{\downarrow} u}{{\downarrow} y}}{\downarrow}y{\downarrow}x}={\uparrow}_{(x,y)\in {{D}^{-}}}{\tfrac{{\downarrow} u}{{\downarrow} y}{\downarrow}(x,y)}.\square</math></div>
 
 
== Einzelnachweis ==
 
<references />
 
  
 
== Leseempfehlung ==
 
== Leseempfehlung ==

Version vom 1. Mai 2023, 03:25 Uhr

Willkommen bei MWiki

Satz des Monats

Satz von Green

Mit [math]\displaystyle{ h }[/math]-Gebiet [math]\displaystyle{ D \subseteq {}^{(\omega)}\mathbb{R}^{2} }[/math], infinitesimalem [math]\displaystyle{ h = |{\downarrow}x|= |{\downarrow}y| = |{}^\curvearrowright \gamma(t) - \gamma(t)| = \mathcal{O}({\tilde{\omega}}^{m}) }[/math], hinreichend großem [math]\displaystyle{ m \in \mathbb{N}^{*}, (x, y) \in D, {D}^{-} := \{(x, y) \in D : (x + h, y + h) \in D\} }[/math], einem geschlossenen, im Gegenuhrzeigersinn durchlaufenen Weg [math]\displaystyle{ \gamma: [a, b[\rightarrow \partial D }[/math] bei Wahl von [math]\displaystyle{ {}^\curvearrowright \gamma(t) = \gamma({}^\curvearrowright t) }[/math] gilt mit [math]\displaystyle{ t \in [a, b[, A \subseteq {[a, b]}^{2} }[/math] und hinreichend [math]\displaystyle{ \alpha }[/math]-stetigen Funktionen [math]\displaystyle{ u, v: D \rightarrow \mathbb{R} }[/math] mit ggf. nicht stetigen Ableitungen [math]\displaystyle{ {\downarrow} u/{\downarrow} x, {\downarrow} u/{\downarrow} y, {\downarrow} v/{\downarrow} x }[/math] und [math]\displaystyle{ {\downarrow} v/{\downarrow} y }[/math]

[math]\displaystyle{ {\uparrow}_{\gamma }{(u\,{\downarrow}x+v\,{\downarrow}y)}={\uparrow}_{(x,y)\in {{D}^{-}}}{\left( \tfrac{{\downarrow} v}{{\downarrow} x}-\tfrac{{\downarrow} u}{{\downarrow} y} \right){\downarrow}(x,y)}. }[/math]

Beweis:

Der Beweis wird nur für [math]\displaystyle{ D := \{(x, y) : r \le x \le s, f(x) \le y \le g(x)\}, r, s \in {}^{(\omega)}\mathbb{R}, f, g : \partial D \rightarrow {}^{(\omega)}\mathbb{R} }[/math] geführt, da das jeweils um [math]\displaystyle{ \check{\pi} }[/math] gedrehte Äquivalent analog resultiert mit jedem [math]\displaystyle{ h }[/math]-Gebiet als Vereinigung solcher Mengen. Da sich die fehlende Beziehung analog ergibt, beschränkt sich die Betrachtung auf

[math]\displaystyle{ {\uparrow}_{\gamma }{u\,{\downarrow}x}=-{\uparrow}_{(x,y)\in {{D}^{-}}}{\tfrac{{\downarrow} u}{{\downarrow} y}{\downarrow}(x,y)}. }[/math]

Unter Vernachlässigung der Teile von [math]\displaystyle{ \gamma }[/math] mit [math]\displaystyle{ {\downarrow}x = 0 }[/math] zum Kurvenintegral wie von [math]\displaystyle{ t := h(u(s, g(s)) - u(r, g(r))) }[/math] gilt

[math]\displaystyle{ -{\uparrow}_{\gamma }{u\,{\downarrow}x}-t={\uparrow}_{r}^{s}{u(x,g(x)){\downarrow}x}-{\uparrow}_{r}^{s}{u(x,f(x)){\downarrow}x}={\uparrow}_{r}^{s}{{\uparrow}_{f(x)}^{g(x)}{\tfrac{{\downarrow} u}{{\downarrow} y}}{\downarrow}y{\downarrow}x}={\uparrow}_{(x,y)\in {{D}^{-}}}{\tfrac{{\downarrow} u}{{\downarrow} y}{\downarrow}(x,y)}.\square }[/math]

Leseempfehlung

Nichtstandardmathematik