Hauptseite: Unterschied zwischen den Versionen

Aus MWiki
Wechseln zu: Navigation, Suche
(Zentrumsverfahren)
K (Beweis:)
 
(41 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
 
__NOTOC__
 
__NOTOC__
 
= Willkommen bei MWiki =
 
= Willkommen bei MWiki =
== Satz des Monats ==
+
== Sätze des Monats ==
Das Zentrumsverfahren löst jedes lösbare LP in <math>\mathcal{O}(\omega{\vartheta}^2)</math>.
+
=== Leibnizsche Differentiationsregel ===
  
== Beweis und Algorithmus ==
+
Für <math>f: {}^{(\omega)}\mathbb{K}^{\grave{n}} \rightarrow {}^{(\omega)}\mathbb{K}, a, b: {}^{(\omega)}\mathbb{K}^{n} \rightarrow {}^{(\omega)}\mathbb{K}, \curvearrowright x := {(s, {x}_{2}, ..., {x}_{n})}^{T}</math> und <math>s \in {}^{(\omega)}\mathbb{K} \setminus \{{x}_{1}\}</math> gilt bei Wahl von <math>\curvearrowright a(x) = a(\curvearrowright x)</math> und <math>\curvearrowright b(x) = b(\curvearrowright x)</math><div style="text-align:center;"><math>\tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}t} \right)={\uparrow}_{a(x)}^{b(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}t}+\tfrac{{\downarrow} b(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,b(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,a(x)).</math></div>
Beweis und Algorithmus: Sei <math>z := \grave{m} + n</math> und <math>d \in [0, 1]</math> die Dichte von <math>A</math>. Zuerst werden <math>{b}^{T}y - {c}^{T}x \le 0, Ax \le b</math> sowie <math>{A}^{T}y \ge c</math> normiert und skaliert. <math>P_r := \{(x, y)^T \in {}^{\omega}\mathbb{R}_{\ge 0}^{z} : {b}^{T}y - {c}^{T}x \le r \in [0, \check{r}], Ax - b \le \underline{r}_m, c - {A}^{T}y \le \underline{r}_n\}</math> habe den Radius <math>\check{r} := s|\min \; \{b_1, ..., b_m, -c_1, ..., -c_n\}|</math> und den Skalierungsfaktor <math>s \in [1, 2]</math>. Es folgt <math>\underline{0}_{z} \in \partial P_{\check{r}}</math>. Nach dem starken Dualitätssatz löst das LP min <math>\{ r \in [0, \check{r}] : (x, y)^T \in P_r\}</math> ebenso die LPs max <math>\{{c}^{T}x : c \in {}^{\omega}\mathbb{R}^{n}, x \in {P}_{\ge 0}\}</math> und min <math>\{{b}^{T}y : y \in {}^{\omega}\mathbb{R}_{\ge 0}^{m}, {A}^{T}y \ge c\}</math>.
 
  
 +
==== Beweis: ====
 +
<div style="text-align:center;"><math>\begin{aligned}\tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}t} \right) &={\left( {\uparrow}_{a(\curvearrowright x)}^{b(\curvearrowright x)}{f(\curvearrowright x,t){\downarrow}t}-{\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}t} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &={\left( {\uparrow}_{a(x)}^{b(x)}{(f(\curvearrowright x,t)-f(x,t)){\downarrow}t}+{\uparrow}_{b(x)}^{b(\curvearrowright x)}{f(\curvearrowright x,t){\downarrow}t}-{\uparrow}_{a(x)}^{a(\curvearrowright x)}{f(\curvearrowright x,t){\downarrow}t} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &={\uparrow}_{a(x)}^{b(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}t}+\tfrac{{\downarrow} b(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,b(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,a(x)).\square\end{aligned}</math></div>
  
Seine Lösung ist der geometrische Schwerpunkt <math>g</math> des Polytops <math>P_0</math>. Mit <math>p_k^* := (\text{min}\,p_k + \text{max}\,p_k)/2</math> für <math>k = 1, ..., \grave{z}</math> wird <math>g</math> durch <math>p_0 := (x_0, y_0, r_0)^T</math> approximiert, bis <math>||\Delta p||_1</math> hinreichend klein ist. Die Lösung <math>t^o(x^o, y^o, r^o)^T</math> des zweidimensionalen LPs min <math>\{ r \in [0, \check{r}] : t \in {}^{\omega}\mathbb{R}_{&gt; 0}, t(x_0, y_0)^T \in P_r\}</math> approximiert <math>g</math> besser und erreicht <math>r \le \check{r}/\sqrt{\grave{z}}</math>. Dies wird mit <math>t^o(x^o, y^o)^T</math> wiederholt, bis ggf. <math>g \in P_0</math> in <math>\mathcal{O}({}_z\check{r} {}_e\check{r}dmn)</math> berechnet ist. Zahlen der Länge <math>\mathcal{O}({\omega})</math> lassen sich bekanntlich nur in <math>\mathcal{O}(\vartheta)</math> abarbeiten.
+
=== Satz von Beal ===
 +
Für <math>a^m + b^n = c^k</math> mit <math>a, b, c \in \mathbb{N}^{*}</math> und <math>k, m, n \in \mathbb{N}_{\ge 3}</math> gilt ggT<math>(a, b, c) > 1.</math>
  
 +
==== Beweis: ====
 +
Aus <math>b^n = (c^{kq}-a^{mr})\left(\tilde{c}^{k\acute{q}} + \tilde{a}^{m\acute{r}}\right) = c^k - a^m + c^{kq} \tilde{a}^{m\acute{r}} - \tilde{c}^{k\acute{q}} a^{mr}</math> folgt, dass die Funktion <math>f(q,r) := c^{k(\hat{q}-1)} - a^{m(\hat{r}-1)} = 0</math> in <math>q, r \in {}^{\omega} \mathbb{R}_{>0}</math> stetig ist und insbesondere die Lösung <math>(q_0, r_0) = \left(\check{1}, \check{1}\right)</math> besitzt. Jede weitere Lösung in Brüchen ergibt nach Potenzieren ggT<math>(a, c) > 1</math> und damit die Behauptung.<math>\square</math>
  
Das Lösen aller zweidimensionalen LPs <math>\text{min}_k r_k</math> durch Bisektionsverfahren für <math>r_k \in {}^{\omega}\mathbb{R}_{\ge 0}</math> und <math>k = 1, ..., z</math> in jeweils <math>\mathcal{O}({\vartheta}^2)</math> ermittelt <math>q \in {}^{\omega}\mathbb{R}^k</math> mit <math>q_k := \Delta p_k \Delta r_k/r</math> und <math>r := \text{min}_k \Delta r_k</math>. Vereinfacht sei <math>|\Delta p_1| = … = |\Delta p_{z}|</math>. Hierbei wäre min <math>r_{\grave{z}}</math> für <math>p^* := p + wq</math> mit <math>w \in {}^{\omega}\mathbb{R}_{\ge 0}</math> ebenso zu lösen. Folgt <math>\text{min}_k \Delta r_k r = 0</math>, wird aufgehört, andernfalls wiederholt bis min <math>r = 0</math> oder min <math>r &gt; 0</math> feststeht. Falls erforderlich werden die Restriktionen vorübergehend um einen gleichen kleinen Betrag abgeschwächt.<math>\square</math>
+
===Folgerung: ===
 +
Die Fermat-Catalan-Vermutung lässt sich analog beweisen und ein unendlicher Abstieg wegen ggT<math>(a,b,c)>1</math> ergibt, dass <math>a^n+b^n=c^n</math> von keinem <math>n \in {}^{\omega}\mathbb{N}_{\ge 3}</math> für beliebige <math>a,b,c \in {}^{\omega}\mathbb{N}^{*}</math> erfüllt wird.<math>\square</math>
  
 
== Leseempfehlung ==
 
== Leseempfehlung ==
 +
 
[https://de.calameo.com/books/00377797710a3d3e2cb97 Nichtstandardmathematik]
 
[https://de.calameo.com/books/00377797710a3d3e2cb97 Nichtstandardmathematik]
  
 
[[en:Main Page]]
 
[[en:Main Page]]

Aktuelle Version vom 4. März 2024, 07:15 Uhr

Willkommen bei MWiki

Sätze des Monats

Leibnizsche Differentiationsregel

Für [math]\displaystyle{ f: {}^{(\omega)}\mathbb{K}^{\grave{n}} \rightarrow {}^{(\omega)}\mathbb{K}, a, b: {}^{(\omega)}\mathbb{K}^{n} \rightarrow {}^{(\omega)}\mathbb{K}, \curvearrowright x := {(s, {x}_{2}, ..., {x}_{n})}^{T} }[/math] und [math]\displaystyle{ s \in {}^{(\omega)}\mathbb{K} \setminus \{{x}_{1}\} }[/math] gilt bei Wahl von [math]\displaystyle{ \curvearrowright a(x) = a(\curvearrowright x) }[/math] und [math]\displaystyle{ \curvearrowright b(x) = b(\curvearrowright x) }[/math]

[math]\displaystyle{ \tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}t} \right)={\uparrow}_{a(x)}^{b(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}t}+\tfrac{{\downarrow} b(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,b(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,a(x)). }[/math]

Beweis:

[math]\displaystyle{ \begin{aligned}\tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}t} \right) &={\left( {\uparrow}_{a(\curvearrowright x)}^{b(\curvearrowright x)}{f(\curvearrowright x,t){\downarrow}t}-{\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}t} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &={\left( {\uparrow}_{a(x)}^{b(x)}{(f(\curvearrowright x,t)-f(x,t)){\downarrow}t}+{\uparrow}_{b(x)}^{b(\curvearrowright x)}{f(\curvearrowright x,t){\downarrow}t}-{\uparrow}_{a(x)}^{a(\curvearrowright x)}{f(\curvearrowright x,t){\downarrow}t} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &={\uparrow}_{a(x)}^{b(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}t}+\tfrac{{\downarrow} b(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,b(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,a(x)).\square\end{aligned} }[/math]

Satz von Beal

Für [math]\displaystyle{ a^m + b^n = c^k }[/math] mit [math]\displaystyle{ a, b, c \in \mathbb{N}^{*} }[/math] und [math]\displaystyle{ k, m, n \in \mathbb{N}_{\ge 3} }[/math] gilt ggT[math]\displaystyle{ (a, b, c) \gt 1. }[/math]

Beweis:

Aus [math]\displaystyle{ b^n = (c^{kq}-a^{mr})\left(\tilde{c}^{k\acute{q}} + \tilde{a}^{m\acute{r}}\right) = c^k - a^m + c^{kq} \tilde{a}^{m\acute{r}} - \tilde{c}^{k\acute{q}} a^{mr} }[/math] folgt, dass die Funktion [math]\displaystyle{ f(q,r) := c^{k(\hat{q}-1)} - a^{m(\hat{r}-1)} = 0 }[/math] in [math]\displaystyle{ q, r \in {}^{\omega} \mathbb{R}_{\gt 0} }[/math] stetig ist und insbesondere die Lösung [math]\displaystyle{ (q_0, r_0) = \left(\check{1}, \check{1}\right) }[/math] besitzt. Jede weitere Lösung in Brüchen ergibt nach Potenzieren ggT[math]\displaystyle{ (a, c) \gt 1 }[/math] und damit die Behauptung.[math]\displaystyle{ \square }[/math]

Folgerung:

Die Fermat-Catalan-Vermutung lässt sich analog beweisen und ein unendlicher Abstieg wegen ggT[math]\displaystyle{ (a,b,c)\gt 1 }[/math] ergibt, dass [math]\displaystyle{ a^n+b^n=c^n }[/math] von keinem [math]\displaystyle{ n \in {}^{\omega}\mathbb{N}_{\ge 3} }[/math] für beliebige [math]\displaystyle{ a,b,c \in {}^{\omega}\mathbb{N}^{*} }[/math] erfüllt wird.[math]\displaystyle{ \square }[/math]

Leseempfehlung

Nichtstandardmathematik