Hauptseite: Unterschied zwischen den Versionen

Aus MWiki
Wechseln zu: Navigation, Suche
(Hauptsätze der Analysis und Approximationssatz)
K (Umkehrsatz für Taylorreihen)
(15 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 2: Zeile 2:
 
= Willkommen bei MWiki =
 
= Willkommen bei MWiki =
 
== Sätze des Monats ==
 
== Sätze des Monats ==
=== Erster Hauptsatz der exakten Differential- und Integralrechnung für <abbr title="Kurvenintegral">KI</abbr>e ===
+
=== Anzahlsatz der algebraischen Zahlen ===
Die Funktion <math>F(z)={\uparrow}_{\gamma }{f(\zeta ){\downarrow}\zeta }</math> ist mit <math>\gamma: [d, x[ \, \cap \, C \rightarrow A \subseteq {}^{(\omega)}\mathbb{K}, C \subseteq \mathbb{R}, f: A \rightarrow {}^{(\omega)}\mathbb{K}, d \in G = [a, b[ \, \cap \, C</math> bei Wahl von <math>{}^\curvearrowright \gamma(x) = \gamma({}^\curvearrowright x)</math> exakt differenzierbar und es gilt für alle <math>x \in G</math> und <math>z = \gamma(x)</math>
 
  
 +
Mit der Riemannschen Zetafunktion <math>\zeta</math> haben die algebraischen Zahlen vom Polynom- oder Reihengrad <math>m</math> und damit allgemein asymptotisch die Anzahl <math>\mathbb{A}(m, n) = \widetilde{\zeta(\grave{m})}\,z(m){{(2n+1)}^{m}}\left( n+\mathcal{O}({_e}n) \right)</math>, wobei <math>z(m)</math> die durchschnittliche Anzahl der Nullstellen eines Polynoms oder einer Reihe ist.
  
<div style="text-align:center;"><math>F^{\prime}(z) = f(z).</math></div>
+
==== Beweis: ====
 +
Der Fall <math>m = 1</math> erfordert nach <ref name="Scheid">[[w:Harald Scheid|<span class="wikipedia">Scheid, Harald</span>]]: ''Zahlentheorie'' : 1. Aufl.; 1991; Bibliographisches Institut; Mannheim; ISBN 9783411148417, S. 323.</ref> den Korrekturterm <math>\mathcal{O}({_e}n n)</math> und gibt die Anzahl <math>4{+}_{k=1}^{n}{\varphi (k)}-1</math> der rationalen Zahlen über die eulersche <math>\varphi</math>-Funktion wieder. Für <math>m > 1</math> ändern die Teilbarkeitsverhältnisse weder den Korrekturterm <math>\mathcal{O}({_e}n n)</math> noch den Hauptterm. Polynome und Reihen mit <math>\text{ggT}({a}_{0}, {a}_{1}, \text{…} , {a}_{m}) \ne 1</math> werden durch <math>1/\zeta(\grave{m})</math> ausgeschlossen: Letzteres ergibt die Produktbildung über die Primzahlen <math>p</math> aller <math>(1 - {p}^{-\grave{m}})</math>, die hier Vielfache der <math>p</math> entfernen und Summen geometrischer Reihen sind.<math>\square</math>
  
==== Beweis ====
+
=== Satz von Brocard ===
<math>{\downarrow}F(z)</math> <math>={\uparrow}_{t\in [d,x] \cap C}{f(\gamma (t)){{\gamma }^{\prime}}(t){\downarrow}t}-{\uparrow}_{t\in [d,x[ \, \cap \, C}{f(\gamma (t)){{\gamma }^{\prime}}(t){\downarrow}t}</math> <math>={\uparrow}_{x}{f(\gamma (t))\tfrac{\gamma ({}^\curvearrowright t)-\gamma (t)}{{}^\curvearrowright t-t}{\downarrow}t}</math> <math>=f(\gamma (x)){{\gamma}^{\prime}}(x){\downarrow}x=</math> <math>\,f(\gamma (x))({}^\curvearrowright\gamma (x)-\gamma (x))</math> <math>=f(z){\downarrow}z.\square</math>
+
Es gilt <math>\{(m, n) \in {}^{\omega} \mathbb{N}^2 : n! + 1 = m^2\} = \{(5, 4), (11, 5), (71, 7)\}.</math>
  
=== Zweiter Hauptsatz der exakten Differential- und Integralrechnung für <abbr title="Kurvenintegral">KI</abbr>e ===
+
==== Beweis: ====
Mit <math>\gamma: G \rightarrow {}^{(\omega)}\mathbb{K}</math> gilt wie oben vorausgesetzt
+
Aus <math>n! = \acute{m}\grave{m}</math> folgt <math>m = \hat{r} \pm 1</math> für <math>r \in {}^{\omega} \mathbb{N}^{*}</math> und <math>n \ge 3</math>. Also ist <math>n! = \hat{r}(\hat{r}\pm2) = 8s(\hat{s} \pm 1)</math> mit <math>s \in {}^{\omega} \mathbb{N}^{*}</math>. Gelte <math>2^q \mid n!</math> und <math>2^{\grave{q}} \nmid n!</math> für maximales <math>q \in {}^{\omega} \mathbb{N}^{*}</math>. Damit ist <math>n! = 2^q(\hat{u} + 1)</math> für <math>u \in {}^{\omega} \mathbb{N}^{*}</math> und zwingend <math>n! = 2^q(2^{q-2} \pm 1)</math>. Die Primfaktorzerlegung von <math>n!</math> erfordert dann <math>n \le 7</math>, was die Behauptung ergibt.<math>\square</math>
  
 +
=== Umkehrsatz für Taylorreihen ===
 +
Für <math>y \in f(\mathbb{D}), y(a) = b</math> und <math>y^{\prime}(a) \ne 0</math> ergibt der [[w:Lagrangesche_Inversionsformel#Formel_von_Lagrange-Bürmann|<span class="wikipedia">Satz von Bürmann</span>]]:<div style="text-align:center;"><math>f^{-1}(y) = a + \tilde{n} {\LARGE{\textbf{+}}}_{m=1}^n{\widetilde{m}{\tilde{\varepsilon}}^{\acute{m}}(y - b)^m({\tilde{u}}^{\acute{m}k})^T(f(\varepsilon u^k + a)^{-m})}+\mathcal{O}(\varepsilon^n).\square</math></div>
  
<div style="text-align:center;"><math>F(\gamma (b))-F(\gamma (a))={\uparrow}_{\gamma }{{F^{\prime}}(\zeta ){\downarrow}\zeta }.</math></div>
+
== Leseempfehlung ==
  
==== Beweis ====
+
[https://de.calameo.com/books/00377797710a3d3e2cb97 Nichtstandardmathematik]
<math>F(\gamma (b))-F(\gamma (a))</math> <math>={+}_{t\in G}{F({}^\curvearrowright\,\gamma (t))}-F(\gamma (t))</math> <math>={+}_{t\in G}{{{F}^{\prime}}(\gamma (t))({}^\curvearrowright\,\gamma (t)-\gamma (t))}</math> <math>={\uparrow}_{t\in G}{{F^{\prime}}(\gamma (t)){{\gamma }^{\prime}}(t){\downarrow}t}</math> <math>={\uparrow}_{\gamma }{{F_{{}^\curvearrowright }^{\prime}}(\zeta ){\downarrow}\zeta }.\square</math>
 
  
=== Approximationssatz ===
+
== Einzelnachweise ==
Die Ableitungen <math>f^{(s)}(x) \in {}^{\omega}\mathbb{R}</math> für <math>x \in {}^{\omega}\mathbb{R}</math> erlauben die interpolierende Funktion <math>g(x) := {+}_{r=0}^{\acute{m}}{\chi_{]x_r, x_{\grave{r}}[}(x)((x_{\grave{r}}-x)p_r(x)+(x-x_r)p_{\grave{r}}(x))/(x_{\grave{r}}-x_r)}+{+}_{r=0}^m{\chi_{\{x_r\}}(x)p_r(x)}</math> für <math>m, n \in {}^{\nu}\mathbb{N}</math> und <math>p_r(x) := {+}_{s=0}^n{f^{(s)}(x_r){(x-x_r)}^s/s!}</math> in <math>\mathcal{O}(\sigma mn)</math> zu berechnen, wobei <math>f^{(s)}(x_r) = g^{(s)}(x_r)</math> für alle <math>x_r \in {}^{\omega}\mathbb{R}</math> gilt. Im Komplexen ist <math>{}^{\omega}\mathbb{R}</math> durch <math>{}^{\omega}\mathbb{C}</math> zu ersetzen und es gelte <math>x = \gamma(t) \in {}^{\omega}\mathbb{C}</math> für den Weg <math>\gamma(t)</math> mit <math>t \in {}^{\omega}\mathbb{R}.\square</math>
+
<references />
 
 
== Leseempfehlungen ==
 
[https://de.calameo.com/books/00377797710a3d3e2cb97 Nichtstandardmathematik]
 
  
 
[[en:Main Page]]
 
[[en:Main Page]]

Version vom 18. Juli 2024, 00:21 Uhr

Willkommen bei MWiki

Sätze des Monats

Anzahlsatz der algebraischen Zahlen

Mit der Riemannschen Zetafunktion [math]\displaystyle{ \zeta }[/math] haben die algebraischen Zahlen vom Polynom- oder Reihengrad [math]\displaystyle{ m }[/math] und damit allgemein asymptotisch die Anzahl [math]\displaystyle{ \mathbb{A}(m, n) = \widetilde{\zeta(\grave{m})}\,z(m){{(2n+1)}^{m}}\left( n+\mathcal{O}({_e}n) \right) }[/math], wobei [math]\displaystyle{ z(m) }[/math] die durchschnittliche Anzahl der Nullstellen eines Polynoms oder einer Reihe ist.

Beweis:

Der Fall [math]\displaystyle{ m = 1 }[/math] erfordert nach [1] den Korrekturterm [math]\displaystyle{ \mathcal{O}({_e}n n) }[/math] und gibt die Anzahl [math]\displaystyle{ 4{+}_{k=1}^{n}{\varphi (k)}-1 }[/math] der rationalen Zahlen über die eulersche [math]\displaystyle{ \varphi }[/math]-Funktion wieder. Für [math]\displaystyle{ m \gt 1 }[/math] ändern die Teilbarkeitsverhältnisse weder den Korrekturterm [math]\displaystyle{ \mathcal{O}({_e}n n) }[/math] noch den Hauptterm. Polynome und Reihen mit [math]\displaystyle{ \text{ggT}({a}_{0}, {a}_{1}, \text{…} , {a}_{m}) \ne 1 }[/math] werden durch [math]\displaystyle{ 1/\zeta(\grave{m}) }[/math] ausgeschlossen: Letzteres ergibt die Produktbildung über die Primzahlen [math]\displaystyle{ p }[/math] aller [math]\displaystyle{ (1 - {p}^{-\grave{m}}) }[/math], die hier Vielfache der [math]\displaystyle{ p }[/math] entfernen und Summen geometrischer Reihen sind.[math]\displaystyle{ \square }[/math]

Satz von Brocard

Es gilt [math]\displaystyle{ \{(m, n) \in {}^{\omega} \mathbb{N}^2 : n! + 1 = m^2\} = \{(5, 4), (11, 5), (71, 7)\}. }[/math]

Beweis:

Aus [math]\displaystyle{ n! = \acute{m}\grave{m} }[/math] folgt [math]\displaystyle{ m = \hat{r} \pm 1 }[/math] für [math]\displaystyle{ r \in {}^{\omega} \mathbb{N}^{*} }[/math] und [math]\displaystyle{ n \ge 3 }[/math]. Also ist [math]\displaystyle{ n! = \hat{r}(\hat{r}\pm2) = 8s(\hat{s} \pm 1) }[/math] mit [math]\displaystyle{ s \in {}^{\omega} \mathbb{N}^{*} }[/math]. Gelte [math]\displaystyle{ 2^q \mid n! }[/math] und [math]\displaystyle{ 2^{\grave{q}} \nmid n! }[/math] für maximales [math]\displaystyle{ q \in {}^{\omega} \mathbb{N}^{*} }[/math]. Damit ist [math]\displaystyle{ n! = 2^q(\hat{u} + 1) }[/math] für [math]\displaystyle{ u \in {}^{\omega} \mathbb{N}^{*} }[/math] und zwingend [math]\displaystyle{ n! = 2^q(2^{q-2} \pm 1) }[/math]. Die Primfaktorzerlegung von [math]\displaystyle{ n! }[/math] erfordert dann [math]\displaystyle{ n \le 7 }[/math], was die Behauptung ergibt.[math]\displaystyle{ \square }[/math]

Umkehrsatz für Taylorreihen

Für [math]\displaystyle{ y \in f(\mathbb{D}), y(a) = b }[/math] und [math]\displaystyle{ y^{\prime}(a) \ne 0 }[/math] ergibt der Satz von Bürmann:

[math]\displaystyle{ f^{-1}(y) = a + \tilde{n} {\LARGE{\textbf{+}}}_{m=1}^n{\widetilde{m}{\tilde{\varepsilon}}^{\acute{m}}(y - b)^m({\tilde{u}}^{\acute{m}k})^T(f(\varepsilon u^k + a)^{-m})}+\mathcal{O}(\varepsilon^n).\square }[/math]

Leseempfehlung

Nichtstandardmathematik

Einzelnachweise

  1. Scheid, Harald: Zahlentheorie : 1. Aufl.; 1991; Bibliographisches Institut; Mannheim; ISBN 9783411148417, S. 323.