Hauptseite
Willkommen bei MWiki
Sätze des Monats
Primzahlsatz
Für [math]\displaystyle{ \pi(x) := |\{p \in {\mathbb{P}_{\le x}} : x \in {}^{\omega}{\mathbb{R}}\}| }[/math] gilt [math]\displaystyle{ \pi(\omega) = \widetilde{{_\epsilon}\omega}\,\omega + \mathcal{O}({_\epsilon}\omega\;{\omega}^{\tilde{2}}) }[/math].
Beweis:
Intervalle fester Länge [math]\displaystyle{ y \in {}^{\omega}{\mathbb{R}_{\gt 0}} }[/math] erlauben [math]\displaystyle{ \check{y} }[/math] Mengen-2-Tupel von Primzahlen|Primzahl so zu bilden, dass das erste Intervall eine unveränderte repräsentative Primzahldichte hat und das zweite Intervall leer ist, dann auf ein Intervall mit den zweitmeisten eines mit den zweitwenigsten Primzahlen folgt usw. Die Stirlingformel legt die Primzahllücke [math]\displaystyle{ n = {\epsilon}^{\sigma} = \mathcal{O}({_\epsilon}(n!)) }[/math] mit [math]\displaystyle{ n \in {}^{\omega}{\mathbb{N}_{\ge2}} }[/math] nahe.
Impliziert der Induktionsanfang [math]\displaystyle{ n = 2 }[/math] bzw. 3 die Annahme, dass mit [math]\displaystyle{ x_4 \in [2, 4[ }[/math] das erste Intervall [math]\displaystyle{ x_n/{_\epsilon}x_n }[/math] Primzahlen enthält, so beweist der Schritt von [math]\displaystyle{ x_n }[/math] nach [math]\displaystyle{ x_n^2 }[/math], dass [math]\displaystyle{ \pi(x_n^2) = \pi(x_n) {\check{x}}_n }[/math] Primzahlen nur aus [math]\displaystyle{ \pi(x_n) = x_n/{_\epsilon}x_n }[/math] folgen. Die Primzahllücke beträgt durchschnittlich [math]\displaystyle{ {_\epsilon}x_n }[/math], maximal [math]\displaystyle{ {_\epsilon}x_n^2 }[/math] und die maximale Entsprechung von [math]\displaystyle{ x_n^2 }[/math] zu [math]\displaystyle{ x_n }[/math] ist [math]\displaystyle{ \omega }[/math] zu [math]\displaystyle{ {\omega}^{\tilde{2}}.\square }[/math]
Satz von Gelfond-Schneider
Mit [math]\displaystyle{ a, c \in {}^{\omega} \mathbb{A}_\mathbb{C} \setminus \mathbb{B} }[/math] und infinitesimalem [math]\displaystyle{ \varepsilon, b \in {}^{\omega}\mathbb{A}_\mathbb{C} \setminus {}^{\omega}\mathbb{Q} }[/math] gilt [math]\displaystyle{ a^b \notin {}_{\omega}^{\omega} \mathbb{A}_\mathbb{C} }[/math].
Beweis:
Die Minimalpolynome [math]\displaystyle{ p }[/math] (und [math]\displaystyle{ q }[/math]) von [math]\displaystyle{ c^r }[/math] bzw. [math]\displaystyle{ c^{r\pm\varepsilon} = a^b }[/math] mit maximalem [math]\displaystyle{ r \in {}^{\omega}\mathbb{Q}_{\gt 0} }[/math] und [math]\displaystyle{ f = p\;(q) }[/math] ergeben den Widerspruch [math]\displaystyle{ {}^1f(c^{r(\pm\varepsilon)}) \ne 0 = (f(c^r) - f(c^{r\pm\varepsilon})) / (c^r - c^{r\pm\varepsilon}) = {}^1f(c^{r(\pm\varepsilon)}).\square }[/math]
MWiki zieht um!
Die neue URL lautet: HWiki