Hauptseite: Unterschied zwischen den Versionen

Aus MWiki
Wechseln zu: Navigation, Suche
K (Sätze von Green und Singmaster)
(Universelles Mehrschrittverfahren, Satz von Goldbach und Fundierungssatz)
Zeile 2: Zeile 2:
 
= Willkommen bei MWiki =
 
= Willkommen bei MWiki =
 
== Sätze des Monats ==
 
== Sätze des Monats ==
=== Satz von Green ===
 
  
Mit <math>h</math>-Gebiet <math>\mathbb{D} \subseteq {}^{(\omega)}\mathbb{R}^{2}</math>, infinitesimalem <math>h = |{\downarrow}x|= |{\downarrow}y| = |\overset{\rightharpoonup}{\gamma}(s) - \gamma(s)| = \mathcal{O}({\tilde{\omega}}^{m})</math>, hinreichend großem <math>m \in \mathbb{N}^{*}, (x, y) \in \mathbb{D}, \mathbb{D}^{-} := \{(x, y) \in \mathbb{D} : (x + h, y + h) \in \mathbb{D}\}</math>, einem geschlossenen, im Gegenuhrzeigersinn durchlaufenen Weg <math>\gamma: [a, b[\rightarrow \partial \mathbb{D}</math> bei Wahl von <math>\overset{\rightharpoonup}{\gamma}(s) = \gamma(\overset{\rightharpoonup}{s})</math> gilt mit <math>s \in [a, b[, A \subseteq {[a, b]}^{2}</math> und hinreichend <math>\alpha</math>-stetigen Funktionen <math>u, v: \mathbb{D} \rightarrow \mathbb{R}</math> mit ggf. nicht stetigen Ableitungen <math>{\downarrow} u/{\downarrow} x, {\downarrow} u/{\downarrow} y, {\downarrow} v/{\downarrow} x</math> und <math>{\downarrow} v/{\downarrow} y</math><div style="text-align:center;"><math>{\uparrow}_{\gamma }{(u\,{\downarrow}x+v\,{\downarrow}y)}={\uparrow}_{(x,y)\in {\mathbb{D}^{-}}}{\left( \tfrac{{\downarrow} v}{{\downarrow} x}-\tfrac{{\downarrow} u}{{\downarrow} y} \right){\downarrow}(x,y)}.</math></div>
+
=== Universelles Mehrschrittverfahren ===
 +
 
 +
Mit <math>n \in {}^{\nu}\mathbb{N}_{\le p}, k, m, p \in {}^{\nu}\mathbb{N}^{*}, {\downarrow}\overset{\rightharpoonup}{x} \in\, ]0, 1[, x \in [a, b] \subseteq {}^{\omega}\mathbb{R}, y : [a, b] \rightarrow {}^{\omega}\mathbb{R}^q,</math> <math>f : [a, b] \times {}^{\omega}\mathbb{R}^{q \times n} \rightarrow {}^{\omega}\mathbb{R}^q, g_k(\overset{\rightharpoonup}{x}) := g_{\acute{k}}(x)</math> und <math>g_0(a) = f(\overset{\leftharpoonup}{a}, y_0, ... , y_{\acute{n}})</math> ergibt die <abbr title="Taylorreihe">TR</abbr> des Anfangswertproblems <math>n</math>-ter Ordnung <math>y^\prime(x) = f(x, y((\rightharpoonup)^0 x), ... , y((\rightharpoonup)^{\acute{n}} x))</math><div style="text-align:center;"><math>y(\overset{\rightharpoonup}{x}) = y(x) + {\downarrow}\overset{\rightharpoonup}{x}{\pm}_{k=1}^{p}{\left (g_{p-k}(\overset{\rightharpoonup}{x}){\LARGE{\textbf{+}}}_{m=k}^{p}{\widetilde{m!}\tbinom{\acute{m}}{\acute{k}}}\right )} + \mathcal{O}(({\downarrow}\overset{\rightharpoonup}{x})^{\grave{p}}).\square</math></div>
 +
 
 +
=== Satz von Goldbach ===
 +
 
 +
Jede gerade Zahl <math>&gt; 2</math> ist Summe zweier Primzahlen.
  
 
==== Beweis: ====
 
==== Beweis: ====
Der Beweis wird nur für <math>\mathbb{D}:= \{(x, y) : r \le x \le s, f(x) \le y \le g(x)\}, r, s \in {}^{(\omega)}\mathbb{R}, f, g : \partial \mathbb{D} \rightarrow {}^{(\omega)}\mathbb{R}</math> geführt, da das jeweils um <math>\check{\pi}</math> gedrehte Äquivalent analog resultiert mit jedem <math>h</math>-Gebiet als Vereinigung solcher Mengen. Da sich die fehlende Beziehung analog ergibt, beschränkt sich die Betrachtung auf <div style="text-align:center;"><math>{\uparrow}_{\gamma }{u\,{\downarrow}x}=-{\uparrow}_{(x,y)\in {\mathbb{D}^{-}}}{\tfrac{{\downarrow} u}{{\downarrow} y}{\downarrow}(x,y)}.</math></div> Unter Vernachlässigung der Teile von <math>\gamma</math> mit <math>{\downarrow}x = 0</math> zum Kurvenintegral wie von <math>s := h(u(r, g(r)) - u(t, g(t)))</math> gilt<div style="text-align:center;"><math>-{\uparrow}_{\gamma }{u\,{\downarrow}x}-s={\uparrow}_{t}^{r}{u(x,g(x)){\downarrow}x}-{\uparrow}_{t}^{r}{u(x,f(x)){\downarrow}x}={\uparrow}_{t}^{r}{{\uparrow}_{f(x)}^{g(x)}{\tfrac{{\downarrow} u}{{\downarrow} y}}{\downarrow}y{\downarrow}x}={\uparrow}_{(x,y)\in {\mathbb{D}^{-}}}{\tfrac{{\downarrow} u}{{\downarrow} y}{\downarrow}(x,y)}.\square</math></div>
+
Mit <math>\hat{m} + \hat{n} = p_{m+r,n-r} + q_{m+r,n-r} + r, r \in \{0, 2, , \max(g(n))\}</math> gilt zugleich <math>\hat{m} + \hat{n} = p_{m+s,n-s} + q_{m+s,n-s} + s,</math> <math>s \in \{0, 2, … , \max(g(n)) + 2\}</math>. Daraus folgt <math>\hat{m} + \hat{n} + 2 = p_{\grave{m}+r,\grave{n}-r} + q_{\grave{m}+r,\grave{n}-r} + r, r \in \{0, 2, … , \max(g(\grave{n}))\}</math>. Vollständige Induktion liefert dann die Behauptung mit dem vorigen Satz.<math>\square</math>
  
=== Satz von Singmaster ===
+
=== Fundierungssatz ===
  
Es gibt maximal 8 verschiedene Binomialkoeffizienten gleichen Werts > 1.
+
Erst die Forderung des Fundierungsaxioms, dass jede nichtleere Teilmenge <math>X \subseteq Y</math> ein Element <math>x_0</math> enthält, sodass <math>X</math> und <math>x_0</math> disjunkt sind, garantiert Zyklenfreiheit.
  
 
==== Beweis: ====
 
==== Beweis: ====
Die Existenz ist klar wegen <math>\tbinom{3003}{1} = \tbinom{78}{2} = \tbinom{15}{5} = \tbinom{14}{6}</math> und dem Aufbau des Pascalschen Dreiecks. Mit <math>p \in {}^{\omega }{\mathbb{P}}, a,b ,c, d \in {}^{\omega }{\mathbb{N^*}}, \hat{a} \le r := p - b, \hat{a} < \hat{c} \le n := p - d, b < d</math> und <math>s \notin \mathbb{P}</math> für alle <math>s \in [\max(r - \acute{a},\grave{n}), r]</math> ergeben die Stirlingformel <math>{n!}^2\sim\pi(\hat{n}+\tilde{3}){(\tilde{\epsilon}n)}^{\hat{n}}</math> und der Primzahlsatz <math>\omega\tbinom{r}{a} \le {}_\epsilon\omega\tbinom{n}{c}</math> für <math>p \rightarrow \omega.\square</math>
+
Es wird <math>X := \{x_m : x_0 := \{\emptyset\}, x_{\omega} := \{x_1\}</math> und <math>x_{\acute{n}} := \{x_n\}</math> mit <math>m \in {}^{\omega}\mathbb{N}</math> und <math>n \in {}^{\omega}\mathbb{N}_{\ge 2}\}</math> gesetzt.<math>\square</math>
 +
 
 
== Leseempfehlung ==
 
== Leseempfehlung ==
  

Version vom 31. Mai 2024, 19:00 Uhr

Willkommen bei MWiki

Sätze des Monats

Universelles Mehrschrittverfahren

Mit [math]\displaystyle{ n \in {}^{\nu}\mathbb{N}_{\le p}, k, m, p \in {}^{\nu}\mathbb{N}^{*}, {\downarrow}\overset{\rightharpoonup}{x} \in\, ]0, 1[, x \in [a, b] \subseteq {}^{\omega}\mathbb{R}, y : [a, b] \rightarrow {}^{\omega}\mathbb{R}^q, }[/math] [math]\displaystyle{ f : [a, b] \times {}^{\omega}\mathbb{R}^{q \times n} \rightarrow {}^{\omega}\mathbb{R}^q, g_k(\overset{\rightharpoonup}{x}) := g_{\acute{k}}(x) }[/math] und [math]\displaystyle{ g_0(a) = f(\overset{\leftharpoonup}{a}, y_0, ... , y_{\acute{n}}) }[/math] ergibt die TR des Anfangswertproblems [math]\displaystyle{ n }[/math]-ter Ordnung [math]\displaystyle{ y^\prime(x) = f(x, y((\rightharpoonup)^0 x), ... , y((\rightharpoonup)^{\acute{n}} x)) }[/math]

[math]\displaystyle{ y(\overset{\rightharpoonup}{x}) = y(x) + {\downarrow}\overset{\rightharpoonup}{x}{\pm}_{k=1}^{p}{\left (g_{p-k}(\overset{\rightharpoonup}{x}){\LARGE{\textbf{+}}}_{m=k}^{p}{\widetilde{m!}\tbinom{\acute{m}}{\acute{k}}}\right )} + \mathcal{O}(({\downarrow}\overset{\rightharpoonup}{x})^{\grave{p}}).\square }[/math]

Satz von Goldbach

Jede gerade Zahl [math]\displaystyle{ > 2 }[/math] ist Summe zweier Primzahlen.

Beweis:

Mit [math]\displaystyle{ \hat{m} + \hat{n} = p_{m+r,n-r} + q_{m+r,n-r} + r, r \in \{0, 2, … , \max(g(n))\} }[/math] gilt zugleich [math]\displaystyle{ \hat{m} + \hat{n} = p_{m+s,n-s} + q_{m+s,n-s} + s, }[/math] [math]\displaystyle{ s \in \{0, 2, … , \max(g(n)) + 2\} }[/math]. Daraus folgt [math]\displaystyle{ \hat{m} + \hat{n} + 2 = p_{\grave{m}+r,\grave{n}-r} + q_{\grave{m}+r,\grave{n}-r} + r, r \in \{0, 2, … , \max(g(\grave{n}))\} }[/math]. Vollständige Induktion liefert dann die Behauptung mit dem vorigen Satz.[math]\displaystyle{ \square }[/math]

Fundierungssatz

Erst die Forderung des Fundierungsaxioms, dass jede nichtleere Teilmenge [math]\displaystyle{ X \subseteq Y }[/math] ein Element [math]\displaystyle{ x_0 }[/math] enthält, sodass [math]\displaystyle{ X }[/math] und [math]\displaystyle{ x_0 }[/math] disjunkt sind, garantiert Zyklenfreiheit.

Beweis:

Es wird [math]\displaystyle{ X := \{x_m : x_0 := \{\emptyset\}, x_{\omega} := \{x_1\} }[/math] und [math]\displaystyle{ x_{\acute{n}} := \{x_n\} }[/math] mit [math]\displaystyle{ m \in {}^{\omega}\mathbb{N} }[/math] und [math]\displaystyle{ n \in {}^{\omega}\mathbb{N}_{\ge 2}\} }[/math] gesetzt.[math]\displaystyle{ \square }[/math]

Leseempfehlung

Nichtstandardmathematik