Hauptseite: Unterschied zwischen den Versionen

Aus MWiki
Wechseln zu: Navigation, Suche
(Zentrumsverfahren)
(Satz von Green)
(6 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 2: Zeile 2:
 
= Willkommen bei MWiki =
 
= Willkommen bei MWiki =
 
== Satz des Monats ==
 
== Satz des Monats ==
Das Zentrumsverfahren löst jedes lösbare LP in <math>\mathcal{O}(\omega{\vartheta}^2)</math>.
+
=== Satz von Green ===
  
== Beweis und Algorithmus ==
+
Für die Nachbarschaftsrelationen <math>B \subseteq {A}^{2}</math> mit einfach zusammenhängender <math>h</math>-Menge <math>A \subseteq {}^{(\omega)}\mathbb{R}^{2}</math>, infinitesimalem <math>h = |dBx|= |dBy| = |\curvearrowright B \gamma(t) - \gamma(t)| = \mathcal{O}({\hat{\omega}}^{m})</math>, hinreichend großem <math>m \in \mathbb{N}^{*}, (x, y) \in A,</math> <math>{A}^{-} := \{(x, y) \in A : (x + h, y + h) \in A\}</math>, einem geschlossenen, im Gegenuhrzeigersinn durchlaufenen Weg <math>\gamma: [a, b[\rightarrow \partial A</math> bei Wahl von <math>\curvearrowright B \gamma(t) = \gamma(\curvearrowright D t)</math> gilt mit <math>t \in [a, b[, D \subseteq {[a, b]}^{2}</math> und hinreichend <math>\alpha</math>-stetigen Funktionen <math>u, v: A \rightarrow \mathbb{R}</math> mit nicht notwendig stetigen partiellen Ableitungen <math>\partial Bu/\partial Bx, \partial Bu/\partial By, \partial Bv/\partial Bx</math> und <math>\partial Bv/\partial By</math><div style="text-align:center;"><math>\int\limits_{\gamma }{(u\,dBx+v\,dBy)}=\int\limits_{(x,y)\in {{A}^{-}}}{\left( \frac{\partial Bv}{\partial Bx}-\frac{\partial Bu}{\partial By} \right)dB(x,y)}.</math></div>
Beweis und Algorithmus: Sei <math>z := \grave{m} + n</math> und <math>d \in [0, 1]</math> die Dichte von <math>A</math>. Zuerst werden <math>{b}^{T}y - {c}^{T}x \le 0, Ax \le b</math> sowie <math>{A}^{T}y \ge c</math> normiert und skaliert. <math>P_r := \{(x, y)^T \in {}^{\omega}\mathbb{R}_{\ge 0}^{z} : {b}^{T}y - {c}^{T}x \le r \in [0, \check{r}], Ax - b \le \underline{r}_m, c - {A}^{T}y \le \underline{r}_n\}</math> habe den Radius <math>\check{r} := s|\min \; \{b_1, ..., b_m, -c_1, ..., -c_n\}|</math> und den Skalierungsfaktor <math>s \in [1, 2]</math>. Es folgt <math>\underline{0}_{z} \in \partial P_{\check{r}}</math>. Nach dem starken Dualitätssatz löst das LP min <math>\{ r \in [0, \check{r}] : (x, y)^T \in P_r\}</math> ebenso die LPs max <math>\{{c}^{T}x : c \in {}^{\omega}\mathbb{R}^{n}, x \in {P}_{\ge 0}\}</math> und min <math>\{{b}^{T}y : y \in {}^{\omega}\mathbb{R}_{\ge 0}^{m}, {A}^{T}y \ge c\}</math>.
 
  
 +
==== Beweis: ====
 +
O. B. d. A. werde der Beweis nur für <math>A := \{(x, y) : r \le x \le s, f(x) \le y \le g(x)\}, r, s \in {}^{(\omega)}\mathbb{R}, f, g : \partial A \rightarrow {}^{(\omega)}\mathbb{R}</math> geführt, da er für das jeweils um <math>\iota</math> gedrehte Äquivalent analog verläuft und jede einfach zusammenhängende <math>h</math>-Menge eine Vereinigung solcher Mengen ist. Es wird nur<div style="text-align:center;"><math>\int\limits_{\gamma }{u\,dBx}=-\int\limits_{(x,y)\in {{A}^{-}}}{\frac{\partial Bu}{\partial By}dB(x,y)}</math></div>gezeigt, da sich die fehlende Beziehung analog ergibt. Da die Teile von <math>\gamma</math> mit <math>dBx = 0</math> zum Kurvenintegral nichts beitragen, gilt mit vernachlässigbarem <math>t := h(u(s, g(s)) - u(r, g(r)))</math><div style="text-align:center;"><math>-\int\limits_{\gamma }{u\,dBx}-t=\int\limits_{r}^{s}{u(x,g(x))dBx}-\int\limits_{r}^{s}{u(x,f(x))dBx}=\int\limits_{r}^{s}{\int\limits_{f(x)}^{g(x)}{\frac{\partial Bu}{\partial By}}dBydBx}=\int\limits_{(x,y)\in {{A}^{-}}}{\frac{\partial Bu}{\partial By}dB(x,y)}.\square</math></div>
  
Seine Lösung ist der geometrische Schwerpunkt <math>g</math> des Polytops <math>P_0</math>. Mit <math>p_k^* := (\text{min}\,p_k + \text{max}\,p_k)/2</math> für <math>k = 1, ..., \grave{z}</math> wird <math>g</math> durch <math>p_0 := (x_0, y_0, r_0)^T</math> approximiert, bis <math>||\Delta p||_1</math> hinreichend klein ist. Die Lösung <math>t^o(x^o, y^o, r^o)^T</math> des zweidimensionalen LPs min <math>\{ r \in [0, \check{r}] : t \in {}^{\omega}\mathbb{R}_{&gt; 0}, t(x_0, y_0)^T \in P_r\}</math> approximiert <math>g</math> besser und erreicht <math>r \le \check{r}/\sqrt{\grave{z}}</math>. Dies wird mit <math>t^o(x^o, y^o)^T</math> wiederholt, bis ggf. <math>g \in P_0</math> in <math>\mathcal{O}({}_z\check{r} {}_e\check{r}dmn)</math> berechnet ist. Zahlen der Länge <math>\mathcal{O}({\omega})</math> lassen sich bekanntlich nur in <math>\mathcal{O}(\vartheta)</math> abarbeiten.
+
== Leseempfehlung ==
 
 
 
 
Das Lösen aller zweidimensionalen LPs <math>\text{min}_k r_k</math> durch Bisektionsverfahren für <math>r_k \in {}^{\omega}\mathbb{R}_{\ge 0}</math> und <math>k = 1, ..., z</math> in jeweils <math>\mathcal{O}({\vartheta}^2)</math> ermittelt <math>q \in {}^{\omega}\mathbb{R}^k</math> mit <math>q_k := \Delta p_k \Delta r_k/r</math> und <math>r := \text{min}_k \Delta r_k</math>. Vereinfacht sei <math>|\Delta p_1| = … = |\Delta p_{z}|</math>. Hierbei wäre min <math>r_{\grave{z}}</math> für <math>p^* := p + wq</math> mit <math>w \in {}^{\omega}\mathbb{R}_{\ge 0}</math> ebenso zu lösen. Folgt <math>\text{min}_k \Delta r_k r = 0</math>, wird aufgehört, andernfalls wiederholt bis min <math>r = 0</math> oder min <math>r &gt; 0</math> feststeht. Falls erforderlich werden die Restriktionen vorübergehend um einen gleichen kleinen Betrag abgeschwächt.<math>\square</math>
 
  
== Leseempfehlung ==
 
 
[https://de.calameo.com/books/00377797710a3d3e2cb97 Nichtstandardmathematik]
 
[https://de.calameo.com/books/00377797710a3d3e2cb97 Nichtstandardmathematik]
  
 
[[en:Main Page]]
 
[[en:Main Page]]

Version vom 30. April 2022, 23:22 Uhr

Willkommen bei MWiki

Satz des Monats

Satz von Green

Für die Nachbarschaftsrelationen [math]\displaystyle{ B \subseteq {A}^{2} }[/math] mit einfach zusammenhängender [math]\displaystyle{ h }[/math]-Menge [math]\displaystyle{ A \subseteq {}^{(\omega)}\mathbb{R}^{2} }[/math], infinitesimalem [math]\displaystyle{ h = |dBx|= |dBy| = |\curvearrowright B \gamma(t) - \gamma(t)| = \mathcal{O}({\hat{\omega}}^{m}) }[/math], hinreichend großem [math]\displaystyle{ m \in \mathbb{N}^{*}, (x, y) \in A, }[/math] [math]\displaystyle{ {A}^{-} := \{(x, y) \in A : (x + h, y + h) \in A\} }[/math], einem geschlossenen, im Gegenuhrzeigersinn durchlaufenen Weg [math]\displaystyle{ \gamma: [a, b[\rightarrow \partial A }[/math] bei Wahl von [math]\displaystyle{ \curvearrowright B \gamma(t) = \gamma(\curvearrowright D t) }[/math] gilt mit [math]\displaystyle{ t \in [a, b[, D \subseteq {[a, b]}^{2} }[/math] und hinreichend [math]\displaystyle{ \alpha }[/math]-stetigen Funktionen [math]\displaystyle{ u, v: A \rightarrow \mathbb{R} }[/math] mit nicht notwendig stetigen partiellen Ableitungen [math]\displaystyle{ \partial Bu/\partial Bx, \partial Bu/\partial By, \partial Bv/\partial Bx }[/math] und [math]\displaystyle{ \partial Bv/\partial By }[/math]

[math]\displaystyle{ \int\limits_{\gamma }{(u\,dBx+v\,dBy)}=\int\limits_{(x,y)\in {{A}^{-}}}{\left( \frac{\partial Bv}{\partial Bx}-\frac{\partial Bu}{\partial By} \right)dB(x,y)}. }[/math]

Beweis:

O. B. d. A. werde der Beweis nur für [math]\displaystyle{ A := \{(x, y) : r \le x \le s, f(x) \le y \le g(x)\}, r, s \in {}^{(\omega)}\mathbb{R}, f, g : \partial A \rightarrow {}^{(\omega)}\mathbb{R} }[/math] geführt, da er für das jeweils um [math]\displaystyle{ \iota }[/math] gedrehte Äquivalent analog verläuft und jede einfach zusammenhängende [math]\displaystyle{ h }[/math]-Menge eine Vereinigung solcher Mengen ist. Es wird nur

[math]\displaystyle{ \int\limits_{\gamma }{u\,dBx}=-\int\limits_{(x,y)\in {{A}^{-}}}{\frac{\partial Bu}{\partial By}dB(x,y)} }[/math]

gezeigt, da sich die fehlende Beziehung analog ergibt. Da die Teile von [math]\displaystyle{ \gamma }[/math] mit [math]\displaystyle{ dBx = 0 }[/math] zum Kurvenintegral nichts beitragen, gilt mit vernachlässigbarem [math]\displaystyle{ t := h(u(s, g(s)) - u(r, g(r))) }[/math]

[math]\displaystyle{ -\int\limits_{\gamma }{u\,dBx}-t=\int\limits_{r}^{s}{u(x,g(x))dBx}-\int\limits_{r}^{s}{u(x,f(x))dBx}=\int\limits_{r}^{s}{\int\limits_{f(x)}^{g(x)}{\frac{\partial Bu}{\partial By}}dBydBx}=\int\limits_{(x,y)\in {{A}^{-}}}{\frac{\partial Bu}{\partial By}dB(x,y)}.\square }[/math]

Leseempfehlung

Nichtstandardmathematik