Hauptseite: Unterschied zwischen den Versionen

Aus MWiki
Wechseln zu: Navigation, Suche
(Primzahlsatz und Satz von Gelfond-Schneider)
(Gegenläufigkeitssatz und Archimedischer Satz)
Zeile 2: Zeile 2:
 
= Willkommen bei MWiki =
 
= Willkommen bei MWiki =
 
== Sätze des Monats ==
 
== Sätze des Monats ==
=== Primzahlsatz ===
+
=== Gegenläufigkeitssatz ===
  
Für <math>\pi(x) := |\{p \in {}^{\omega}{\mathbb{P}} : p \le x \in {}^{\omega}{\mathbb{R}}\}|</math> gilt <math>\pi(\omega) = \widetilde{{_e}\omega}\omega + \mathcal{O}({_e}\omega{\omega}^{\tilde{2}})</math>.
+
Durchläuft der Weg <math>\gamma: [a, b[ \; \cap \; C \rightarrow V</math> mit <math>C \subseteq \mathbb{R}</math> die Kanten aller <math>n</math>-Würfel mit der Seitenlänge <math>\iota</math> im <math>n</math>-Volumen <math>V \subseteq {}^{(\omega)}\mathbb{R}^{n}</math> mit <math>n \in \mathbb{N}_{\ge 2}</math> genau einmal, wobei in allen Seitenflächen der <math>n</math>-Würfel alle paarweise gegenüberliegenden Seiten in jeweils gegenläufiger Richtung, aber einheitlich traversiert werden, so gilt für <math>D \subseteq \mathbb{R}^{2}, B \subseteq {V}^{2}, f = ({f}_{1}, ..., {f}_{n}): V \rightarrow {}^{(\omega)}\mathbb{R}^{n}, \gamma(t) = x, \gamma(\curvearrowright t) = \curvearrowright x</math> und <math>{V}_{\curvearrowright } := \{\curvearrowright x \in V: x \in V, \curvearrowright x \ne \curvearrowleft x\}</math>
  
==== Beweis: ====
 
Im Sieb des Eratosthenes nehmen die Primzahlanzahlen nahezu regelmäßig ab. Aus Intervallen fester Länge <math>y \in {}^{\omega}{\mathbb{R}_{&gt;0}}</math> lassen sich <math>\hat{y}</math> Mengen-2-Tupel von Primzahlen so bilden, dass das erste Intervall eine unveränderte repräsentative Primzahldichte hat und das zweite Intervall leer ist, dann auf ein Intervall mit den zweitmeisten eines mit den zweitwenigsten Primzahlen folgt usw.
 
  
Ist mit Induktionsanfang <math>n</math> = 2 bzw. 3 die Induktionsannahme, dass mit <math>n \in {}^{\omega}{\mathbb{N}_{\ge2}}</math> und beliebigem <math>x_4 \in [2, 4[</math> das erste Intervall <math>x_n/{_e}x_n</math> Primzahlen enthält, so beweist die Betrachtung der Primzahllücken von primen <math>p\# /q + 1</math> mit <math>p, q \in {}^{\omega}\mathbb{P}</math> im Induktionsschritt von <math>x_n</math> nach <math>x_n^2</math>, dass sich dann <math>\pi(x_n^2) = \pi(x_n) \check{x}_n</math> Primzahlen nur aus <math>\pi(x_n) = x_n/{_e}x_n</math> ergeben. Der durchschnittliche Primzahlabstand beträgt <math>{_e}x_n</math> und die maximale Entsprechung von <math>x_n^2</math> zu <math>x_n</math> ist <math>\omega</math> zu <math>{\omega}^{\tilde{2}}.\square</math>
+
<div style="text-align:center;"><math>\uparrow_{t \in [a,b[ \; \cap \; C}{f(\gamma (t)){{{{\gamma }'}}_{\curvearrowright }}(t)\downarrow t}=\uparrow_{\begin{smallmatrix} (x,\curvearrowright x) \\ \in V\times {{V}_{\curvearrowright}} \end{smallmatrix}}{f(x)\downarrow{x}}=\uparrow_{\begin{smallmatrix} t \in [a,b[ \; \cap \; C, \\ \gamma | {\partial{}^{\acute{n}}} V \end{smallmatrix}}{f(\gamma (t)){{{{\gamma }'}}_{\curvearrowright }}(t)\downarrow t}.</math></div>
  
=== Satz von Gelfond-Schneider ===
+
==== Beweis: ====
Mit <math>a, c \in {}^{\omega} \mathbb{A}_\mathbb{C}^{*} \setminus \{1\}, Q :=  {}^{\omega} \mathbb{R} \setminus {}^{\omega} \mathbb{T}_\mathbb{R}</math> und <math>b, \varepsilon \in {}^{\omega} \mathbb{A}_\mathbb{C} \setminus Q</math> gilt <math>a^b \in {}^{\omega} \mathbb{T}_\mathbb{C}</math>.
+
Bei Betrachten zweier beliebiger Quadrate mit gemeinsamer Kante der Länge <math>\iota</math>, die in einer Ebene liegen, werden nur die Kanten von <math>V\times{V}_{\curvearrowright}</math> nicht in beiden Richtungen bei gleichem Funktionswert durchlaufen. Sie liegen alle und damit der zu durchlaufende Weg genau in <math>{\partial}^{\acute{n}}V.\square</math>
  
==== Beweis: ====
+
=== Archimedischer Satz ===
Setzt <math>b \in Q</math> das Minimalpolynom <math>p(a^b) = p(c^q)</math> auf 0, so liefert die Annahme <math>a^b = c^{q+\varepsilon}</math> mit maximalem <math>q \in Q_{>0}</math> den Widerspruch <math>0 = (p(a^b) - p(c^q)) / (a^b - c^q) = p^\prime(a^b) = p^\prime(c^q) \ne 0.\square</math>
+
Es gibt ein <math>m \in {}^{\nu}\mathbb{N}</math> mit <math>a < b m</math> genau dann, wenn mit <math>a, b \in {\mathbb{R}}_{>0}</math> für <math>a > b</math> zumindest <math>a < b \nu</math> gilt, da <math>\nu = \max {}^{\nu}\mathbb{N}</math> ist.<math>\square</math>
  
 
== Leseempfehlung ==
 
== Leseempfehlung ==

Version vom 31. August 2023, 19:38 Uhr

Willkommen bei MWiki

Sätze des Monats

Gegenläufigkeitssatz

Durchläuft der Weg [math]\displaystyle{ \gamma: [a, b[ \; \cap \; C \rightarrow V }[/math] mit [math]\displaystyle{ C \subseteq \mathbb{R} }[/math] die Kanten aller [math]\displaystyle{ n }[/math]-Würfel mit der Seitenlänge [math]\displaystyle{ \iota }[/math] im [math]\displaystyle{ n }[/math]-Volumen [math]\displaystyle{ V \subseteq {}^{(\omega)}\mathbb{R}^{n} }[/math] mit [math]\displaystyle{ n \in \mathbb{N}_{\ge 2} }[/math] genau einmal, wobei in allen Seitenflächen der [math]\displaystyle{ n }[/math]-Würfel alle paarweise gegenüberliegenden Seiten in jeweils gegenläufiger Richtung, aber einheitlich traversiert werden, so gilt für [math]\displaystyle{ D \subseteq \mathbb{R}^{2}, B \subseteq {V}^{2}, f = ({f}_{1}, ..., {f}_{n}): V \rightarrow {}^{(\omega)}\mathbb{R}^{n}, \gamma(t) = x, \gamma(\curvearrowright t) = \curvearrowright x }[/math] und [math]\displaystyle{ {V}_{\curvearrowright } := \{\curvearrowright x \in V: x \in V, \curvearrowright x \ne \curvearrowleft x\} }[/math]


[math]\displaystyle{ \uparrow_{t \in [a,b[ \; \cap \; C}{f(\gamma (t)){{{{\gamma }'}}_{\curvearrowright }}(t)\downarrow t}=\uparrow_{\begin{smallmatrix} (x,\curvearrowright x) \\ \in V\times {{V}_{\curvearrowright}} \end{smallmatrix}}{f(x)\downarrow{x}}=\uparrow_{\begin{smallmatrix} t \in [a,b[ \; \cap \; C, \\ \gamma | {\partial{}^{\acute{n}}} V \end{smallmatrix}}{f(\gamma (t)){{{{\gamma }'}}_{\curvearrowright }}(t)\downarrow t}. }[/math]

Beweis:

Bei Betrachten zweier beliebiger Quadrate mit gemeinsamer Kante der Länge [math]\displaystyle{ \iota }[/math], die in einer Ebene liegen, werden nur die Kanten von [math]\displaystyle{ V\times{V}_{\curvearrowright} }[/math] nicht in beiden Richtungen bei gleichem Funktionswert durchlaufen. Sie liegen alle und damit der zu durchlaufende Weg genau in [math]\displaystyle{ {\partial}^{\acute{n}}V.\square }[/math]

Archimedischer Satz

Es gibt ein [math]\displaystyle{ m \in {}^{\nu}\mathbb{N} }[/math] mit [math]\displaystyle{ a \lt b m }[/math] genau dann, wenn mit [math]\displaystyle{ a, b \in {\mathbb{R}}_{\gt 0} }[/math] für [math]\displaystyle{ a \gt b }[/math] zumindest [math]\displaystyle{ a \lt b \nu }[/math] gilt, da [math]\displaystyle{ \nu = \max {}^{\nu}\mathbb{N} }[/math] ist.[math]\displaystyle{ \square }[/math]

Leseempfehlung

Nichtstandardmathematik