Hauptseite: Unterschied zwischen den Versionen

Aus MWiki
Wechseln zu: Navigation, Suche
K (Beweis:)
(72 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
 
__NOTOC__
 
__NOTOC__
 
= Willkommen bei MWiki =
 
= Willkommen bei MWiki =
== Satz des Monats ==
+
== Sätze des Monats ==
=== Großer Fermatscher Satz ===
+
=== Leibnizsche Differentiationsregel ===
  
Für alle <math>p \in {}^{\omega }{\mathbb{P}_{\ge 3}}</math> und <math>x, y, z \in {}^{\omega }{\mathbb{N}^{*}}</math> gilt stets <math>x^p + y^p \ne z^p</math> und damit für alle <math>m \in {}^{\omega }{\mathbb{N}_{\ge 3}}</math> statt <math>p</math>.
+
Für <math>f: {}^{(\omega)}\mathbb{K}^{\grave{n}} \rightarrow {}^{(\omega)}\mathbb{K}, a, b: {}^{(\omega)}\mathbb{K}^{n} \rightarrow {}^{(\omega)}\mathbb{K}, \curvearrowright x := {(s, {x}_{2}, ..., {x}_{n})}^{T}</math> und <math>s \in {}^{(\omega)}\mathbb{K} \setminus \{{x}_{1}\}</math> gilt bei Wahl von <math>\curvearrowright a(x) = a(\curvearrowright x)</math> und <math>\curvearrowright b(x) = b(\curvearrowright x)</math><div style="text-align:center;"><math>\tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}t} \right)={\uparrow}_{a(x)}^{b(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}t}+\tfrac{{\downarrow} b(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,b(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,a(x)).</math></div>
  
 
==== Beweis: ====
 
==== Beweis: ====
Aufgrund des [[w:Kleiner fermatscher Satz|<span class="wikipedia">kleinen fermatschen Satzes</span>]] <math>\mod p</math> ist umformuliert <math>f_{akp}(n) := (2n + a - kp)^p - n^p - (n + a)^p \ne 0</math> für <math>a, k, n \in {}^{\omega }{\mathbb{N}^{*}}</math> mit <math>kp &lt; n</math> zu zeigen.
+
<div style="text-align:center;"><math>\begin{aligned}\tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}t} \right) &={\left( {\uparrow}_{a(\curvearrowright x)}^{b(\curvearrowright x)}{f(\curvearrowright x,t){\downarrow}t}-{\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}t} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &={\left( {\uparrow}_{a(x)}^{b(x)}{(f(\curvearrowright x,t)-f(x,t)){\downarrow}t}+{\uparrow}_{b(x)}^{b(\curvearrowright x)}{f(\curvearrowright x,t){\downarrow}t}-{\uparrow}_{a(x)}^{a(\curvearrowright x)}{f(\curvearrowright x,t){\downarrow}t} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &={\uparrow}_{a(x)}^{b(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}t}+\tfrac{{\downarrow} b(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,b(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,a(x)).\square\end{aligned}</math></div>
<div class="toccolours mw-collapsible mw-collapsed" style="width:100%; overflow:auto;">
 
<div style="font-weight:bold;line-height:1.6;">Beweisdetails</div>
 
<div class="mw-collapsible-content">Aus <math>x := n, y:= n + a</math> und <math>z := 2n + a + d</math> mit <math>d \in {}^{\omega }{\mathbb{N}^{*}}</math> folgt wegen <math>z^p \equiv y, y^p \equiv y</math> und <math>z^p \equiv z</math> erst <math>d \equiv 0 \mod p</math>, dann <math>d = \pm kp</math>. Da <math>x + y = 2n + a &gt; z</math> sein muss, ist <math>f_{akp}(n)</math> angemessen gewählt.</div></div>
 
  
Die Behauptung folgt nun durch [[w:Vollständige Induktion|<span class="wikipedia">Induktion</span>]] nach <math>n</math> wegen des Falles <math>m = 4</math><ref name="Ribenboim">[[w:Paulo Ribenboim|<span class="wikipedia">Ribenboim, Paulo</span>]]: ''Thirteen Lectures on Fermat's Last Theorem'' : 1979; Springer; New York; ISBN 9780387904320, S. 35 - 38.</ref> und <math>y &gt; x &gt; p</math><ref name="aaO">a. a. O., S. 226.</ref>:
+
=== Satz von Beal ===
 +
Für <math>a^m + b^n = c^k</math> mit <math>a, b, c \in \mathbb{N}^{*}</math> und <math>k, m, n \in \mathbb{N}_{\ge 3}</math> gilt ggT<math>(a, b, c) > 1.</math>
  
'''Induktionsanfang''' <math>(n \le p): f_{akp}(n) \ne 0</math> für alle <math>a, k</math> und <math>p</math>. Sei <math>r \in {}^{\omega }{\mathbb{N}_{&lt; p}}</math>.  
+
==== Beweis: ====
 +
Aus <math>b^n = (c^{kq}-a^{mr})\left(\tilde{c}^{k\acute{q}} + \tilde{a}^{m\acute{r}}\right) = c^k - a^m + c^{kq} \tilde{a}^{m\acute{r}} - \tilde{c}^{k\acute{q}} a^{mr}</math> folgt, dass die Funktion <math>f(q,r) := c^{k(\hat{q}-1)} - a^{m(\hat{r}-1)} = 0</math> in <math>q, r \in {}^{\omega} \mathbb{R}_{>0}</math> stetig ist und insbesondere die Lösung <math>(q_0, r_0) = \left(\check{1}, \check{1}\right)</math> besitzt. Jede weitere Lösung in Brüchen ergibt nach Potenzieren ggT<math>(a, c) > 1</math> und damit die Behauptung.<math>\square</math>
  
'''Induktionsschritt''' <math>\,(n = q + r \; \rightarrow \; n^{*} = n + p)</math>: Sei <math>f_{akp}(n^{*}) \ge 0</math>, aber <math>f_{akp}(n) &lt; 0</math>, da aufgrund des [[w:Monotone reelle Funktion|<span class="wikipedia">streng monotonen Steigens</span>]] von <math>f_{akp}(n)</math> sonst nichts zu beweisen ist.
+
===Folgerung: ===
<div class="toccolours mw-collapsible mw-collapsed" style="width:100%; overflow:auto;">
+
Die Fermat-Catalan-Vermutung lässt sich analog beweisen und ein unendlicher Abstieg wegen ggT<math>(a,b,c)>1</math> ergibt, dass <math>a^n+b^n=c^n</math> von keinem <math>n \in {}^{\omega}\mathbb{N}_{\ge 3}</math> für beliebige <math>a,b,c \in {}^{\omega}\mathbb{N}^{*}</math> erfüllt wird.<math>\square</math>
<div style="font-weight:bold;line-height:1.6;">Beweisdetails</div>
 
<div class="mw-collapsible-content">Die strenge Monotonie ergibt sich aus der (stetigen) Ableitung nach <math>n</math> mit <math>f_{akp}(n)' = p(2(2n + a - kp)^{p - 1} - n^{p - 1} - (n + a)^{p - 1}) &gt; 0</math>.</div></div>
 
 
 
Es gilt <math>f_{akp}(n^{*}) = (\int_0^{n^{*}}{f_{akp}(v)}dv)' \ne 0</math>, da <math>(n^{*})^{p + 1} + (n^{*} + a)^{p + 1}</math> nach Abspaltung des positiven Faktors nicht <math>((n^{*})^p + (n^{*} + a)^p)^2</math> teilt wie [[w:Polynomdivision|<span class="wikipedia">Polynomdivision</span>]] zeigt.<math>\square</math>
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:100%; overflow:auto;">
 
<div style="font-weight:bold;line-height:1.6;">Beweisdetails</div>
 
<div class="mw-collapsible-content"><math>\int_0^{n^{*}}{f_{akp}(v)}dv = ((2n^{*} + a - kp)^{p + 1} / 2 - (n^{*})^{p + 1} - (n^{*} + a)^{p + 1})/(p + 1) + t = ((2n^{*} + a - kp)^{(p + 1)/2} \pm \sqrt{2(n^{*})^{p + 1} + 2(n^{*} + a)^{p + 1}})^2/(2p + 2) + t</math> mit <math>t \in {}^{\omega}{\mathbb{Q}}</math>, wobei die dritte binomische Formel <math>r^2 - s^2 = (r \pm s)^2 := (r + s)(r - s)</math> benutzt wurde. Dann ist die Ableitung nach Abspaltung des unwesentlichen <math>\hat{2}((2n^{*} + a - kp)^{(p + 1)/2} + \sqrt{2(n^{*})^{p + 1} + 2(n^{*} + a)^{p + 1}})/(p + 1)</math> gerade <math>(\hat{2}(2n^{*} + a - kp)^{(p - 1)/2} - \hat{2}((n^{*})^p + (n^{*} + a)^p)/\sqrt{2(n^{*})^{p + 1} + 2(n^{*} + a)^{p + 1}})</math>. Nach Quadrieren ergibt die erwähnte Polynomdivision <math>(n^{*})^{p - 1} + (n^{*} + a)^{p - 1} + a^2(n^{*})^{p - 1}(n^{*} + a)^{p - 1}/((n^{*})^{p + 1} + (n^{*} + a)^{p + 1})</math> wie Nachrechnen durch Multiplikation bestätigt.</div></div>
 
  
 
== Leseempfehlung ==
 
== Leseempfehlung ==
  
 
[https://de.calameo.com/books/00377797710a3d3e2cb97 Nichtstandardmathematik]
 
[https://de.calameo.com/books/00377797710a3d3e2cb97 Nichtstandardmathematik]
 
== Einzelnachweise ==
 
<references />
 
  
 
[[en:Main Page]]
 
[[en:Main Page]]

Version vom 4. März 2024, 08:15 Uhr

Willkommen bei MWiki

Sätze des Monats

Leibnizsche Differentiationsregel

Für [math]\displaystyle{ f: {}^{(\omega)}\mathbb{K}^{\grave{n}} \rightarrow {}^{(\omega)}\mathbb{K}, a, b: {}^{(\omega)}\mathbb{K}^{n} \rightarrow {}^{(\omega)}\mathbb{K}, \curvearrowright x := {(s, {x}_{2}, ..., {x}_{n})}^{T} }[/math] und [math]\displaystyle{ s \in {}^{(\omega)}\mathbb{K} \setminus \{{x}_{1}\} }[/math] gilt bei Wahl von [math]\displaystyle{ \curvearrowright a(x) = a(\curvearrowright x) }[/math] und [math]\displaystyle{ \curvearrowright b(x) = b(\curvearrowright x) }[/math]

[math]\displaystyle{ \tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}t} \right)={\uparrow}_{a(x)}^{b(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}t}+\tfrac{{\downarrow} b(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,b(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,a(x)). }[/math]

Beweis:

[math]\displaystyle{ \begin{aligned}\tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}t} \right) &={\left( {\uparrow}_{a(\curvearrowright x)}^{b(\curvearrowright x)}{f(\curvearrowright x,t){\downarrow}t}-{\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}t} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &={\left( {\uparrow}_{a(x)}^{b(x)}{(f(\curvearrowright x,t)-f(x,t)){\downarrow}t}+{\uparrow}_{b(x)}^{b(\curvearrowright x)}{f(\curvearrowright x,t){\downarrow}t}-{\uparrow}_{a(x)}^{a(\curvearrowright x)}{f(\curvearrowright x,t){\downarrow}t} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &={\uparrow}_{a(x)}^{b(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}t}+\tfrac{{\downarrow} b(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,b(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,a(x)).\square\end{aligned} }[/math]

Satz von Beal

Für [math]\displaystyle{ a^m + b^n = c^k }[/math] mit [math]\displaystyle{ a, b, c \in \mathbb{N}^{*} }[/math] und [math]\displaystyle{ k, m, n \in \mathbb{N}_{\ge 3} }[/math] gilt ggT[math]\displaystyle{ (a, b, c) \gt 1. }[/math]

Beweis:

Aus [math]\displaystyle{ b^n = (c^{kq}-a^{mr})\left(\tilde{c}^{k\acute{q}} + \tilde{a}^{m\acute{r}}\right) = c^k - a^m + c^{kq} \tilde{a}^{m\acute{r}} - \tilde{c}^{k\acute{q}} a^{mr} }[/math] folgt, dass die Funktion [math]\displaystyle{ f(q,r) := c^{k(\hat{q}-1)} - a^{m(\hat{r}-1)} = 0 }[/math] in [math]\displaystyle{ q, r \in {}^{\omega} \mathbb{R}_{\gt 0} }[/math] stetig ist und insbesondere die Lösung [math]\displaystyle{ (q_0, r_0) = \left(\check{1}, \check{1}\right) }[/math] besitzt. Jede weitere Lösung in Brüchen ergibt nach Potenzieren ggT[math]\displaystyle{ (a, c) \gt 1 }[/math] und damit die Behauptung.[math]\displaystyle{ \square }[/math]

Folgerung:

Die Fermat-Catalan-Vermutung lässt sich analog beweisen und ein unendlicher Abstieg wegen ggT[math]\displaystyle{ (a,b,c)\gt 1 }[/math] ergibt, dass [math]\displaystyle{ a^n+b^n=c^n }[/math] von keinem [math]\displaystyle{ n \in {}^{\omega}\mathbb{N}_{\ge 3} }[/math] für beliebige [math]\displaystyle{ a,b,c \in {}^{\omega}\mathbb{N}^{*} }[/math] erfüllt wird.[math]\displaystyle{ \square }[/math]

Leseempfehlung

Nichtstandardmathematik