Hauptseite: Unterschied zwischen den Versionen

Aus MWiki
Wechseln zu: Navigation, Suche
(Größte-Primzahl-Kriterium und Transzendenz der Eulerschen Konstante)
K (Beweis:)
(45 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 2: Zeile 2:
 
= Willkommen bei MWiki =
 
= Willkommen bei MWiki =
 
== Sätze des Monats ==
 
== Sätze des Monats ==
=== Größte-Primzahl-Kriterium ===
+
=== Leibnizsche Differentiationsregel ===
Hat eine reelle Zahl bei gekürzten Brüchen die Darstellung <math>\widehat{ap}b \pm \hat{s}t</math> mit natürlichen <math>a, b, s</math> und <math>t, abst \ne 0</math> und <math>a + s &gt; 2</math> sowie der (zweit-) größten Primzahl <math>p \in {}^{\omega }\mathbb{P}, p \nmid b</math> und <math>p \nmid s</math>, so ist sie <math>\omega</math>-transzendent.
+
 
 +
Für <math>f: {}^{(\omega)}\mathbb{K}^{\grave{n}} \rightarrow {}^{(\omega)}\mathbb{K}, a, b: {}^{(\omega)}\mathbb{K}^{n} \rightarrow {}^{(\omega)}\mathbb{K}, \curvearrowright x := {(s, {x}_{2}, ..., {x}_{n})}^{T}</math> und <math>s \in {}^{(\omega)}\mathbb{K} \setminus \{{x}_{1}\}</math> gilt bei Wahl von <math>\curvearrowright a(x) = a(\curvearrowright x)</math> und <math>\curvearrowright b(x) = b(\curvearrowright x)</math><div style="text-align:center;"><math>\tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}t} \right)={\uparrow}_{a(x)}^{b(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}t}+\tfrac{{\downarrow} b(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,b(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,a(x)).</math></div>
  
 
==== Beweis: ====
 
==== Beweis: ====
Der Nenner von <math>\widehat{aps} (bs \pm apt)</math> ist <math>\ge 2p \ge 2\omega - \mathcal{O}({_e}\omega\sqrt{\omega}) &gt; \omega</math> aufgrund des Primzahlsatzes.<math>\square </math>
+
<div style="text-align:center;"><math>\begin{aligned}\tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}t} \right) &={\left( {\uparrow}_{a(\curvearrowright x)}^{b(\curvearrowright x)}{f(\curvearrowright x,t){\downarrow}t}-{\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}t} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &={\left( {\uparrow}_{a(x)}^{b(x)}{(f(\curvearrowright x,t)-f(x,t)){\downarrow}t}+{\uparrow}_{b(x)}^{b(\curvearrowright x)}{f(\curvearrowright x,t){\downarrow}t}-{\uparrow}_{a(x)}^{a(\curvearrowright x)}{f(\curvearrowright x,t){\downarrow}t} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &={\uparrow}_{a(x)}^{b(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}t}+\tfrac{{\downarrow} b(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,b(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,a(x)).\square\end{aligned}</math></div>
  
=== Transzendenz der Eulerschen Konstante ===
+
=== Satz von Beal ===
Mit <math>s(x) := \sum\limits_{n=1}^{\omega}{\hat{n}{{x}^{n}}}</math> für <math>x \in {}^{\omega }{\mathbb{R}}</math> sei die Eulersche Konstante <math>\gamma := s(1) - {_e}\omega = \int\limits_{1}^{\omega}{\left( \widehat{\left\lfloor x \right\rfloor} - \hat{x} \right)dx}</math>, wobei Umsummieren <math>\gamma \in \; ]0, 1[</math> zeigt.
+
Für <math>a^m + b^n = c^k</math> mit <math>a, b, c \in \mathbb{N}^{*}</math> und <math>k, m, n \in \mathbb{N}_{\ge 3}</math> gilt ggT<math>(a, b, c) > 1.</math>
  
Wird <math>{_e}\omega = s(\hat{2})\;{_2}\omega</math> akzeptiert, so gilt <math>\gamma \in {}^{\omega }\mathbb{T}_{\mathbb{R}}</math> auf <math>\mathcal{O}({2}^{-\omega}\hat{\omega}\;{_e}\omega)</math> genau.
 
 
==== Beweis: ====
 
==== Beweis: ====
Die exakte Integration macht <math>-{_e}(-\acute{x}) = s(x) + \mathcal{O}(\hat{\omega}{x}^{\grave{\omega}}/\acute{x}) + t(x)dx</math> für <math>x \in [-1, 1 - \hat{\nu}]</math> und <math>t(x) \in {}^{\omega }{\mathbb{R}}</math> aus der geometrischen Reihe.
+
Aus <math>b^n = (c^{kq}-a^{mr})\left(\tilde{c}^{k\acute{q}} + \tilde{a}^{m\acute{r}}\right) = c^k - a^m + c^{kq} \tilde{a}^{m\acute{r}} - \tilde{c}^{k\acute{q}} a^{mr}</math> folgt, dass die Funktion <math>f(q,r) := c^{k(\hat{q}-1)} - a^{m(\hat{r}-1)} = 0</math> in <math>q, r \in {}^{\omega} \mathbb{R}_{>0}</math> stetig ist und insbesondere die Lösung <math>(q_0, r_0) = \left(\check{1}, \check{1}\right)</math> besitzt. Jede weitere Lösung in Brüchen ergibt nach Potenzieren ggT<math>(a, c) > 1</math> und damit die Behauptung.<math>\square</math>
 +
 
 +
===Folgerung: ===
 +
Die Fermat-Catalan-Vermutung lässt sich analog beweisen und ein unendlicher Abstieg wegen ggT<math>(a,b,c)>1</math> ergibt, dass <math>a^n+b^n=c^n</math> von keinem <math>n \in {}^{\omega}\mathbb{N}_{\ge 3}</math> für beliebige <math>a,b,c \in {}^{\omega}\mathbb{N}^{*}</math> erfüllt wird.<math>\square</math>
  
Wird der kleine fermatsche Satz auf den Zähler von <math>\hat{p}(1 - 2^{-p}\,{_2}\omega)</math> für <math>p = \max \, {}^{\omega}\mathbb{P}</math> angewandt, liefert das Größte-Primzahl-Kriterium die Behauptung.<math>\square</math>
 
 
== Leseempfehlung ==
 
== Leseempfehlung ==
  

Version vom 4. März 2024, 08:15 Uhr

Willkommen bei MWiki

Sätze des Monats

Leibnizsche Differentiationsregel

Für [math]\displaystyle{ f: {}^{(\omega)}\mathbb{K}^{\grave{n}} \rightarrow {}^{(\omega)}\mathbb{K}, a, b: {}^{(\omega)}\mathbb{K}^{n} \rightarrow {}^{(\omega)}\mathbb{K}, \curvearrowright x := {(s, {x}_{2}, ..., {x}_{n})}^{T} }[/math] und [math]\displaystyle{ s \in {}^{(\omega)}\mathbb{K} \setminus \{{x}_{1}\} }[/math] gilt bei Wahl von [math]\displaystyle{ \curvearrowright a(x) = a(\curvearrowright x) }[/math] und [math]\displaystyle{ \curvearrowright b(x) = b(\curvearrowright x) }[/math]

[math]\displaystyle{ \tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}t} \right)={\uparrow}_{a(x)}^{b(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}t}+\tfrac{{\downarrow} b(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,b(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,a(x)). }[/math]

Beweis:

[math]\displaystyle{ \begin{aligned}\tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}t} \right) &={\left( {\uparrow}_{a(\curvearrowright x)}^{b(\curvearrowright x)}{f(\curvearrowright x,t){\downarrow}t}-{\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}t} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &={\left( {\uparrow}_{a(x)}^{b(x)}{(f(\curvearrowright x,t)-f(x,t)){\downarrow}t}+{\uparrow}_{b(x)}^{b(\curvearrowright x)}{f(\curvearrowright x,t){\downarrow}t}-{\uparrow}_{a(x)}^{a(\curvearrowright x)}{f(\curvearrowright x,t){\downarrow}t} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &={\uparrow}_{a(x)}^{b(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}t}+\tfrac{{\downarrow} b(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,b(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,a(x)).\square\end{aligned} }[/math]

Satz von Beal

Für [math]\displaystyle{ a^m + b^n = c^k }[/math] mit [math]\displaystyle{ a, b, c \in \mathbb{N}^{*} }[/math] und [math]\displaystyle{ k, m, n \in \mathbb{N}_{\ge 3} }[/math] gilt ggT[math]\displaystyle{ (a, b, c) \gt 1. }[/math]

Beweis:

Aus [math]\displaystyle{ b^n = (c^{kq}-a^{mr})\left(\tilde{c}^{k\acute{q}} + \tilde{a}^{m\acute{r}}\right) = c^k - a^m + c^{kq} \tilde{a}^{m\acute{r}} - \tilde{c}^{k\acute{q}} a^{mr} }[/math] folgt, dass die Funktion [math]\displaystyle{ f(q,r) := c^{k(\hat{q}-1)} - a^{m(\hat{r}-1)} = 0 }[/math] in [math]\displaystyle{ q, r \in {}^{\omega} \mathbb{R}_{\gt 0} }[/math] stetig ist und insbesondere die Lösung [math]\displaystyle{ (q_0, r_0) = \left(\check{1}, \check{1}\right) }[/math] besitzt. Jede weitere Lösung in Brüchen ergibt nach Potenzieren ggT[math]\displaystyle{ (a, c) \gt 1 }[/math] und damit die Behauptung.[math]\displaystyle{ \square }[/math]

Folgerung:

Die Fermat-Catalan-Vermutung lässt sich analog beweisen und ein unendlicher Abstieg wegen ggT[math]\displaystyle{ (a,b,c)\gt 1 }[/math] ergibt, dass [math]\displaystyle{ a^n+b^n=c^n }[/math] von keinem [math]\displaystyle{ n \in {}^{\omega}\mathbb{N}_{\ge 3} }[/math] für beliebige [math]\displaystyle{ a,b,c \in {}^{\omega}\mathbb{N}^{*} }[/math] erfüllt wird.[math]\displaystyle{ \square }[/math]

Leseempfehlung

Nichtstandardmathematik