Hauptseite: Unterschied zwischen den Versionen

Aus MWiki
Wechseln zu: Navigation, Suche
K
K (Beweis:)
(39 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
 
__NOTOC__
 
__NOTOC__
 
= Willkommen bei MWiki =
 
= Willkommen bei MWiki =
=== Cauchyscher Integralsatz ===
+
== Sätze des Monats ==
 +
=== Leibnizsche Differentiationsregel ===
  
Für die Nachbarschaftsrelationen <math>B \subseteq {A}^{2}</math> und <math>D \subseteq [a, b]</math> mit einer einfach zusammenhängenden <math>h</math>-Menge <math>A \subseteq {}^{\omega}\mathbb{C}</math>, infinitesimalem <math>h</math> sowie einer holomorphen Funktion <math>f: A \rightarrow {}^{\omega}\mathbb{C}</math> und einem geschlossenen Weg <math>\gamma: [a, b[\rightarrow \partial A</math>, wenn <math>\curvearrowright B \gamma(t) = \gamma(\curvearrowright D t)</math> mit <math>t \in [a, b[</math> gewählt wird, gilt
+
Für <math>f: {}^{(\omega)}\mathbb{K}^{\grave{n}} \rightarrow {}^{(\omega)}\mathbb{K}, a, b: {}^{(\omega)}\mathbb{K}^{n} \rightarrow {}^{(\omega)}\mathbb{K}, \curvearrowright x := {(s, {x}_{2}, ..., {x}_{n})}^{T}</math> und <math>s \in {}^{(\omega)}\mathbb{K} \setminus \{{x}_{1}\}</math> gilt bei Wahl von <math>\curvearrowright a(x) = a(\curvearrowright x)</math> und <math>\curvearrowright b(x) = b(\curvearrowright x)</math><div style="text-align:center;"><math>\tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}t} \right)={\uparrow}_{a(x)}^{b(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}t}+\tfrac{{\downarrow} b(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,b(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,a(x)).</math></div>
<div style="text-align:center;"><math>\int\limits_{\gamma }{f(z)dBz}=0.</math></div>
 
  
'''Beweis:''' Aufgrund der Cauchy-Riemannschen partiellen Differentialgleichungen und des Satzes von Green gilt mit <math>x := \text{Re} \, z, y := \text{Im} \, z, u := \text{Re} \, f, v := \text{Im} \, f</math> und <math>{A}^{-} := \{z \in A : z + h + ih \in A\}</math>
+
==== Beweis: ====
 +
<div style="text-align:center;"><math>\begin{aligned}\tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}t} \right) &={\left( {\uparrow}_{a(\curvearrowright x)}^{b(\curvearrowright x)}{f(\curvearrowright x,t){\downarrow}t}-{\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}t} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &={\left( {\uparrow}_{a(x)}^{b(x)}{(f(\curvearrowright x,t)-f(x,t)){\downarrow}t}+{\uparrow}_{b(x)}^{b(\curvearrowright x)}{f(\curvearrowright x,t){\downarrow}t}-{\uparrow}_{a(x)}^{a(\curvearrowright x)}{f(\curvearrowright x,t){\downarrow}t} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &={\uparrow}_{a(x)}^{b(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}t}+\tfrac{{\downarrow} b(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,b(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,a(x)).\square\end{aligned}</math></div>
  
<div style="text-align:center;"><math>\int\limits_{\gamma }{f(z)dBz}=\int\limits_{\gamma }{\left( u+iv \right)\left( dBx+idBy \right)}=\int\limits_{z\in {{A}^{-}}}{\left( i\left( \frac{\partial Bu}{\partial Bx}-\frac{\partial Bv}{\partial By} \right)-\left( \frac{\partial Bv}{\partial Bx}+\frac{\partial Bu}{\partial By} \right) \right)dB(x,y)}=0.\square</math></div>
+
=== Satz von Beal ===
 +
Für <math>a^m + b^n = c^k</math> mit <math>a, b, c \in \mathbb{N}^{*}</math> und <math>k, m, n \in \mathbb{N}_{\ge 3}</math> gilt ggT<math>(a, b, c) > 1.</math>
  
=== Fundamentalsatz der Algebra ===
+
==== Beweis: ====
 +
Aus <math>b^n = (c^{kq}-a^{mr})\left(\tilde{c}^{k\acute{q}} + \tilde{a}^{m\acute{r}}\right) = c^k - a^m + c^{kq} \tilde{a}^{m\acute{r}} - \tilde{c}^{k\acute{q}} a^{mr}</math> folgt, dass die Funktion <math>f(q,r) := c^{k(\hat{q}-1)} - a^{m(\hat{r}-1)} = 0</math> in <math>q, r \in {}^{\omega} \mathbb{R}_{>0}</math> stetig ist und insbesondere die Lösung <math>(q_0, r_0) = \left(\check{1}, \check{1}\right)</math> besitzt. Jede weitere Lösung in Brüchen ergibt nach Potenzieren ggT<math>(a, c) > 1</math> und damit die Behauptung.<math>\square</math>
  
Für jedes nicht-konstante Polynom <math>p \in {}^{(\omega)}\mathbb{C}</math> gibt es ein <math>z \in {}^{(\omega)}\mathbb{C}</math> mit <math>p(z) = 0</math>.
+
===Folgerung: ===
 +
Die Fermat-Catalan-Vermutung lässt sich analog beweisen und ein unendlicher Abstieg wegen ggT<math>(a,b,c)>1</math> ergibt, dass <math>a^n+b^n=c^n</math> von keinem <math>n \in {}^{\omega}\mathbb{N}_{\ge 3}</math> für beliebige <math>a,b,c \in {}^{\omega}\mathbb{N}^{*}</math> erfüllt wird.<math>\square</math>
  
'''Indirekter Beweis:''' Durch affin-lineare Variablensubstitutionen läst sich <math>1/p(0) \ne \mathcal{O}(\text{d0})</math> erreichen. Die Annahme von <math>p(z) \ne 0</math> für alle <math>z \in {}^{(\omega)}\mathbb{C}</math> ergibt für das holomorphe <math>f(z) := 1/p(z)</math> wegen <math>f(1/\text{d0}) = \mathcal{O}(\text{d0})</math>.
+
== Leseempfehlung ==
  
Aufgrund der Mittelwertungleichung <math>|f(0)| \le {|f|}_{\gamma}</math> gilt mit <math>\gamma = \partial\mathbb{B}_{r}(0)</math> und beliebigem <math>r \in {}^{(\omega)}\mathbb{R}_{&gt;0}</math> also <math>f(0) = \mathcal{O}(\text{d0})</math> im Widerspruch zur Voraussetzung.<math>\square</math>
 
 
== Leseempfehlungen ==
 
 
[https://de.calameo.com/books/00377797710a3d3e2cb97 Nichtstandardmathematik]
 
[https://de.calameo.com/books/00377797710a3d3e2cb97 Nichtstandardmathematik]
  
 
[[en:Main Page]]
 
[[en:Main Page]]

Version vom 4. März 2024, 08:15 Uhr

Willkommen bei MWiki

Sätze des Monats

Leibnizsche Differentiationsregel

Für [math]\displaystyle{ f: {}^{(\omega)}\mathbb{K}^{\grave{n}} \rightarrow {}^{(\omega)}\mathbb{K}, a, b: {}^{(\omega)}\mathbb{K}^{n} \rightarrow {}^{(\omega)}\mathbb{K}, \curvearrowright x := {(s, {x}_{2}, ..., {x}_{n})}^{T} }[/math] und [math]\displaystyle{ s \in {}^{(\omega)}\mathbb{K} \setminus \{{x}_{1}\} }[/math] gilt bei Wahl von [math]\displaystyle{ \curvearrowright a(x) = a(\curvearrowright x) }[/math] und [math]\displaystyle{ \curvearrowright b(x) = b(\curvearrowright x) }[/math]

[math]\displaystyle{ \tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}t} \right)={\uparrow}_{a(x)}^{b(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}t}+\tfrac{{\downarrow} b(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,b(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,a(x)). }[/math]

Beweis:

[math]\displaystyle{ \begin{aligned}\tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}t} \right) &={\left( {\uparrow}_{a(\curvearrowright x)}^{b(\curvearrowright x)}{f(\curvearrowright x,t){\downarrow}t}-{\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}t} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &={\left( {\uparrow}_{a(x)}^{b(x)}{(f(\curvearrowright x,t)-f(x,t)){\downarrow}t}+{\uparrow}_{b(x)}^{b(\curvearrowright x)}{f(\curvearrowright x,t){\downarrow}t}-{\uparrow}_{a(x)}^{a(\curvearrowright x)}{f(\curvearrowright x,t){\downarrow}t} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &={\uparrow}_{a(x)}^{b(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}t}+\tfrac{{\downarrow} b(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,b(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,a(x)).\square\end{aligned} }[/math]

Satz von Beal

Für [math]\displaystyle{ a^m + b^n = c^k }[/math] mit [math]\displaystyle{ a, b, c \in \mathbb{N}^{*} }[/math] und [math]\displaystyle{ k, m, n \in \mathbb{N}_{\ge 3} }[/math] gilt ggT[math]\displaystyle{ (a, b, c) \gt 1. }[/math]

Beweis:

Aus [math]\displaystyle{ b^n = (c^{kq}-a^{mr})\left(\tilde{c}^{k\acute{q}} + \tilde{a}^{m\acute{r}}\right) = c^k - a^m + c^{kq} \tilde{a}^{m\acute{r}} - \tilde{c}^{k\acute{q}} a^{mr} }[/math] folgt, dass die Funktion [math]\displaystyle{ f(q,r) := c^{k(\hat{q}-1)} - a^{m(\hat{r}-1)} = 0 }[/math] in [math]\displaystyle{ q, r \in {}^{\omega} \mathbb{R}_{\gt 0} }[/math] stetig ist und insbesondere die Lösung [math]\displaystyle{ (q_0, r_0) = \left(\check{1}, \check{1}\right) }[/math] besitzt. Jede weitere Lösung in Brüchen ergibt nach Potenzieren ggT[math]\displaystyle{ (a, c) \gt 1 }[/math] und damit die Behauptung.[math]\displaystyle{ \square }[/math]

Folgerung:

Die Fermat-Catalan-Vermutung lässt sich analog beweisen und ein unendlicher Abstieg wegen ggT[math]\displaystyle{ (a,b,c)\gt 1 }[/math] ergibt, dass [math]\displaystyle{ a^n+b^n=c^n }[/math] von keinem [math]\displaystyle{ n \in {}^{\omega}\mathbb{N}_{\ge 3} }[/math] für beliebige [math]\displaystyle{ a,b,c \in {}^{\omega}\mathbb{N}^{*} }[/math] erfüllt wird.[math]\displaystyle{ \square }[/math]

Leseempfehlung

Nichtstandardmathematik