Hauptseite: Unterschied zwischen den Versionen

Aus MWiki
Wechseln zu: Navigation, Suche
(Hauptsätze der Analysis und Approximationssatz)
K (Beweis:)
(5 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 2: Zeile 2:
 
= Willkommen bei MWiki =
 
= Willkommen bei MWiki =
 
== Sätze des Monats ==
 
== Sätze des Monats ==
=== Erster Hauptsatz der exakten Differential- und Integralrechnung für <abbr title="Kurvenintegral">KI</abbr>e ===
+
=== Leibnizsche Differentiationsregel ===
Die Funktion <math>F(z)={\uparrow}_{\gamma }{f(\zeta ){\downarrow}\zeta }</math> ist mit <math>\gamma: [d, x[ \, \cap \, C \rightarrow A \subseteq {}^{(\omega)}\mathbb{K}, C \subseteq \mathbb{R}, f: A \rightarrow {}^{(\omega)}\mathbb{K}, d \in G = [a, b[ \, \cap \, C</math> bei Wahl von <math>{}^\curvearrowright \gamma(x) = \gamma({}^\curvearrowright x)</math> exakt differenzierbar und es gilt für alle <math>x \in G</math> und <math>z = \gamma(x)</math>
 
  
 +
Für <math>f: {}^{(\omega)}\mathbb{K}^{\grave{n}} \rightarrow {}^{(\omega)}\mathbb{K}, a, b: {}^{(\omega)}\mathbb{K}^{n} \rightarrow {}^{(\omega)}\mathbb{K}, \curvearrowright x := {(s, {x}_{2}, ..., {x}_{n})}^{T}</math> und <math>s \in {}^{(\omega)}\mathbb{K} \setminus \{{x}_{1}\}</math> gilt bei Wahl von <math>\curvearrowright a(x) = a(\curvearrowright x)</math> und <math>\curvearrowright b(x) = b(\curvearrowright x)</math><div style="text-align:center;"><math>\tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}t} \right)={\uparrow}_{a(x)}^{b(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}t}+\tfrac{{\downarrow} b(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,b(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,a(x)).</math></div>
  
<div style="text-align:center;"><math>F^{\prime}(z) = f(z).</math></div>
+
==== Beweis: ====
 +
<div style="text-align:center;"><math>\begin{aligned}\tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}t} \right) &={\left( {\uparrow}_{a(\curvearrowright x)}^{b(\curvearrowright x)}{f(\curvearrowright x,t){\downarrow}t}-{\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}t} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &={\left( {\uparrow}_{a(x)}^{b(x)}{(f(\curvearrowright x,t)-f(x,t)){\downarrow}t}+{\uparrow}_{b(x)}^{b(\curvearrowright x)}{f(\curvearrowright x,t){\downarrow}t}-{\uparrow}_{a(x)}^{a(\curvearrowright x)}{f(\curvearrowright x,t){\downarrow}t} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &={\uparrow}_{a(x)}^{b(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}t}+\tfrac{{\downarrow} b(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,b(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,a(x)).\square\end{aligned}</math></div>
  
==== Beweis ====
+
=== Satz von Beal ===
<math>{\downarrow}F(z)</math> <math>={\uparrow}_{t\in [d,x] \cap C}{f(\gamma (t)){{\gamma }^{\prime}}(t){\downarrow}t}-{\uparrow}_{t\in [d,x[ \, \cap \, C}{f(\gamma (t)){{\gamma }^{\prime}}(t){\downarrow}t}</math> <math>={\uparrow}_{x}{f(\gamma (t))\tfrac{\gamma ({}^\curvearrowright t)-\gamma (t)}{{}^\curvearrowright t-t}{\downarrow}t}</math> <math>=f(\gamma (x)){{\gamma}^{\prime}}(x){\downarrow}x=</math> <math>\,f(\gamma (x))({}^\curvearrowright\gamma (x)-\gamma (x))</math> <math>=f(z){\downarrow}z.\square</math>
+
Für <math>a^m + b^n = c^k</math> mit <math>a, b, c \in \mathbb{N}^{*}</math> und <math>k, m, n \in \mathbb{N}_{\ge 3}</math> gilt ggT<math>(a, b, c) > 1.</math>
  
=== Zweiter Hauptsatz der exakten Differential- und Integralrechnung für <abbr title="Kurvenintegral">KI</abbr>e ===
+
==== Beweis: ====
Mit <math>\gamma: G \rightarrow {}^{(\omega)}\mathbb{K}</math> gilt wie oben vorausgesetzt
+
Aus <math>b^n = (c^{kq}-a^{mr})\left(\tilde{c}^{k\acute{q}} + \tilde{a}^{m\acute{r}}\right) = c^k - a^m + c^{kq} \tilde{a}^{m\acute{r}} - \tilde{c}^{k\acute{q}} a^{mr}</math> folgt, dass die Funktion <math>f(q,r) := c^{k(\hat{q}-1)} - a^{m(\hat{r}-1)} = 0</math> in <math>q, r \in {}^{\omega} \mathbb{R}_{>0}</math> stetig ist und insbesondere die Lösung <math>(q_0, r_0) = \left(\check{1}, \check{1}\right)</math> besitzt. Jede weitere Lösung in Brüchen ergibt nach Potenzieren ggT<math>(a, c) > 1</math> und damit die Behauptung.<math>\square</math>
  
 +
===Folgerung: ===
 +
Die Fermat-Catalan-Vermutung lässt sich analog beweisen und ein unendlicher Abstieg wegen ggT<math>(a,b,c)>1</math> ergibt, dass <math>a^n+b^n=c^n</math> von keinem <math>n \in {}^{\omega}\mathbb{N}_{\ge 3}</math> für beliebige <math>a,b,c \in {}^{\omega}\mathbb{N}^{*}</math> erfüllt wird.<math>\square</math>
  
<div style="text-align:center;"><math>F(\gamma (b))-F(\gamma (a))={\uparrow}_{\gamma }{{F^{\prime}}(\zeta ){\downarrow}\zeta }.</math></div>
+
== Leseempfehlung ==
  
==== Beweis ====
 
<math>F(\gamma (b))-F(\gamma (a))</math> <math>={+}_{t\in G}{F({}^\curvearrowright\,\gamma (t))}-F(\gamma (t))</math> <math>={+}_{t\in G}{{{F}^{\prime}}(\gamma (t))({}^\curvearrowright\,\gamma (t)-\gamma (t))}</math> <math>={\uparrow}_{t\in G}{{F^{\prime}}(\gamma (t)){{\gamma }^{\prime}}(t){\downarrow}t}</math> <math>={\uparrow}_{\gamma }{{F_{{}^\curvearrowright }^{\prime}}(\zeta ){\downarrow}\zeta }.\square</math>
 
 
=== Approximationssatz ===
 
Die Ableitungen <math>f^{(s)}(x) \in {}^{\omega}\mathbb{R}</math> für <math>x \in {}^{\omega}\mathbb{R}</math> erlauben die interpolierende Funktion <math>g(x) := {+}_{r=0}^{\acute{m}}{\chi_{]x_r, x_{\grave{r}}[}(x)((x_{\grave{r}}-x)p_r(x)+(x-x_r)p_{\grave{r}}(x))/(x_{\grave{r}}-x_r)}+{+}_{r=0}^m{\chi_{\{x_r\}}(x)p_r(x)}</math> für <math>m, n \in {}^{\nu}\mathbb{N}</math> und <math>p_r(x) := {+}_{s=0}^n{f^{(s)}(x_r){(x-x_r)}^s/s!}</math> in <math>\mathcal{O}(\sigma mn)</math> zu berechnen, wobei <math>f^{(s)}(x_r) = g^{(s)}(x_r)</math> für alle <math>x_r \in {}^{\omega}\mathbb{R}</math> gilt. Im Komplexen ist <math>{}^{\omega}\mathbb{R}</math> durch <math>{}^{\omega}\mathbb{C}</math> zu ersetzen und es gelte <math>x = \gamma(t) \in {}^{\omega}\mathbb{C}</math> für den Weg <math>\gamma(t)</math> mit <math>t \in {}^{\omega}\mathbb{R}.\square</math>
 
 
== Leseempfehlungen ==
 
 
[https://de.calameo.com/books/00377797710a3d3e2cb97 Nichtstandardmathematik]
 
[https://de.calameo.com/books/00377797710a3d3e2cb97 Nichtstandardmathematik]
  
 
[[en:Main Page]]
 
[[en:Main Page]]

Version vom 4. März 2024, 08:15 Uhr

Willkommen bei MWiki

Sätze des Monats

Leibnizsche Differentiationsregel

Für [math]\displaystyle{ f: {}^{(\omega)}\mathbb{K}^{\grave{n}} \rightarrow {}^{(\omega)}\mathbb{K}, a, b: {}^{(\omega)}\mathbb{K}^{n} \rightarrow {}^{(\omega)}\mathbb{K}, \curvearrowright x := {(s, {x}_{2}, ..., {x}_{n})}^{T} }[/math] und [math]\displaystyle{ s \in {}^{(\omega)}\mathbb{K} \setminus \{{x}_{1}\} }[/math] gilt bei Wahl von [math]\displaystyle{ \curvearrowright a(x) = a(\curvearrowright x) }[/math] und [math]\displaystyle{ \curvearrowright b(x) = b(\curvearrowright x) }[/math]

[math]\displaystyle{ \tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}t} \right)={\uparrow}_{a(x)}^{b(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}t}+\tfrac{{\downarrow} b(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,b(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,a(x)). }[/math]

Beweis:

[math]\displaystyle{ \begin{aligned}\tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}t} \right) &={\left( {\uparrow}_{a(\curvearrowright x)}^{b(\curvearrowright x)}{f(\curvearrowright x,t){\downarrow}t}-{\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}t} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &={\left( {\uparrow}_{a(x)}^{b(x)}{(f(\curvearrowright x,t)-f(x,t)){\downarrow}t}+{\uparrow}_{b(x)}^{b(\curvearrowright x)}{f(\curvearrowright x,t){\downarrow}t}-{\uparrow}_{a(x)}^{a(\curvearrowright x)}{f(\curvearrowright x,t){\downarrow}t} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &={\uparrow}_{a(x)}^{b(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}t}+\tfrac{{\downarrow} b(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,b(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,a(x)).\square\end{aligned} }[/math]

Satz von Beal

Für [math]\displaystyle{ a^m + b^n = c^k }[/math] mit [math]\displaystyle{ a, b, c \in \mathbb{N}^{*} }[/math] und [math]\displaystyle{ k, m, n \in \mathbb{N}_{\ge 3} }[/math] gilt ggT[math]\displaystyle{ (a, b, c) \gt 1. }[/math]

Beweis:

Aus [math]\displaystyle{ b^n = (c^{kq}-a^{mr})\left(\tilde{c}^{k\acute{q}} + \tilde{a}^{m\acute{r}}\right) = c^k - a^m + c^{kq} \tilde{a}^{m\acute{r}} - \tilde{c}^{k\acute{q}} a^{mr} }[/math] folgt, dass die Funktion [math]\displaystyle{ f(q,r) := c^{k(\hat{q}-1)} - a^{m(\hat{r}-1)} = 0 }[/math] in [math]\displaystyle{ q, r \in {}^{\omega} \mathbb{R}_{\gt 0} }[/math] stetig ist und insbesondere die Lösung [math]\displaystyle{ (q_0, r_0) = \left(\check{1}, \check{1}\right) }[/math] besitzt. Jede weitere Lösung in Brüchen ergibt nach Potenzieren ggT[math]\displaystyle{ (a, c) \gt 1 }[/math] und damit die Behauptung.[math]\displaystyle{ \square }[/math]

Folgerung:

Die Fermat-Catalan-Vermutung lässt sich analog beweisen und ein unendlicher Abstieg wegen ggT[math]\displaystyle{ (a,b,c)\gt 1 }[/math] ergibt, dass [math]\displaystyle{ a^n+b^n=c^n }[/math] von keinem [math]\displaystyle{ n \in {}^{\omega}\mathbb{N}_{\ge 3} }[/math] für beliebige [math]\displaystyle{ a,b,c \in {}^{\omega}\mathbb{N}^{*} }[/math] erfüllt wird.[math]\displaystyle{ \square }[/math]

Leseempfehlung

Nichtstandardmathematik