Hauptseite: Unterschied zwischen den Versionen

Aus MWiki
Wechseln zu: Navigation, Suche
(Satz von Gelfond-Schneider, Drei-Kuben-Satz und Satz von Fickett)
(Darstellungssätze für Integrale und Ableitungen)
(8 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 2: Zeile 2:
 
= Willkommen bei MWiki =
 
= Willkommen bei MWiki =
 
== Sätze des Monats ==
 
== Sätze des Monats ==
=== Satz von Gelfond-Schneider ===
+
=== Definition ===
Mit <math>a, c \in {}^{\omega} \mathbb{A}_\mathbb{C}^{*} \setminus \{1\}, Q :=  {}^{\omega} \mathbb{R} \setminus {}^{\omega} \mathbb{T}_\mathbb{R}</math> und <math>b, \varepsilon \in {}^{\omega} \mathbb{A}_\mathbb{C} \setminus Q</math> gilt <math>a^b \in {}^{\omega} \mathbb{T}_\mathbb{C}:</math>
 
  
==== Beweis: ====
+
Seien <math>f_n^*(z) = f(\eta_nz)</math> die <em>Schwestern</em> zur Taylorreihe <math>f(z) \in \mathcal{O}(\mathbb{D})</math> um 0 auf dem Gebiet <math>\mathbb{D} \subseteq {}^{\omega}\mathbb{C}</math>  mit <math>m, n \in {}^{\omega}\mathbb{N}^{*}</math> und <math>\eta_n^m := \underline{1}^{2^{\lceil m/n \rceil}}</math> sowie <math>\delta_n^*f = \tilde{2}(f - f_n^*)</math> die <em>halben Schwesterabstände</em> von <math>f</math>. Mit <math>\mu_n^m := m!n!/(m + n)!</math> bilden <math>\mu</math> und <math>\eta</math> einen eigenen auf Ebene der Taylorreihen auflösbaren Kalkül, der eine einfache und endliche geschlossene Darstellung von Integralen und Ableitungen erlaubt.<math>\triangle</math>
Setzt <math>b \in Q</math> das Minimalpolynom <math>p(a^b) = p(c^q)</math> auf 0, so liefert die Annahme <math>a^b = c^{q+\varepsilon}</math> mit maximalem <math>q \in Q_{&gt;0}</math> den Widerspruch <math>0 = (p(a^b) - p(c^q)) / (a^b - c^q) = p^\prime(a^b) = p^\prime(c^q) \ne 0.\square</math>
+
 
 +
=== Darstellungssatz für Integrale ===
 +
 
 +
Die Taylorreihe (s. u.) <math>f(z) \in \mathcal{O}(\mathbb{D})</math> um 0 auf <math>\mathbb{D} \subseteq {}^{\omega}\mathbb{C}</math> ergibt mit <math>\grave{m}, n \in {}^{\omega}\mathbb{N}^*</math><div style="text-align:center;"><math>{\uparrow}_0^z...{\uparrow}_0^{\zeta_2}{f(\zeta_1){\downarrow}\zeta_1\;...\;{\downarrow}\zeta_n} = \widetilde{n!} f(z\mu_n) z^n.\square</math></div>
  
=== Drei-Kuben-Satz ===
+
=== Darstellungssatz für Ableitungen ===
Drei-Kuben-Satz: Es gilt <math>S := \{n \in \mathbb{Z} : n \ne \pm 4\mod 9\} = \{n \in \mathbb{Z} : n = a^3 + b^3 + c^3 + 3(a + b)c(a - b + c) = (a + c)^3 + (b - c)^3 + c^3\} \subset a^3 + b^3 + c^3 + 6{\mathbb{Z}}</math>, da unabhängige vollständige Induktion nach den gleichberechtigten Variablen <math>a, b, c \in {\mathbb{Z}}</math> zunächst <math>\{0, \pm 1, \pm 2, \pm 3\} \subset S</math> zeigt und dann die Behauptung.<math>\square</math>
 
  
=== Satz von Fickett ===
+
Mit <math>{}^{\widetilde{\nu}}\dot{\mathbb{C}} \subset \mathbb{D} \subseteq {}^{\omega}\mathbb{C}</math> ergeben die Taylorreihe<div style="text-align:center;"><math>f(z):=f(0) + {\LARGE{\textbf{+}}}_{m=1}^{\omega }{\widetilde{m!}\,{{f}^{(m)}}(0){z^m}},</math></div><math>\varepsilon := \tilde{2}^j\tilde{r}, j \in {}^{\omega}\mathbb{Z}, n = \epsilon^{\sigma} \in {}^{\omega}\mathbb{N}^{*}, u :=\epsilon^{\tilde{n} \hat{\underline{\pi}}}</math> und der Konvergenzradius <math>r \in {}^{\nu}{\mathbb{R}}_{&gt;0}</math> von <math>f</math><div style="text-align:center;"><math>{{f}^{(n)}}(0)=2^{jn}\acute{n}!{\LARGE{\textbf{+}}}_{k=1}^{n}{\delta_n^* f(\tilde{2}^j u^k)}.</math></div>
Für jede Lage zweier überlappender kongruenter <math>n</math>-Quader <math>Q</math> und <math>R</math> mit <math>n \in {}^{\omega }\mathbb{N}_{\ge 2}, \grave{m} := \hat{n}</math> und dem exakten Standardmaß <math>\mu</math> gilt, wobei <math>\mu</math> für <math>n = 2</math> die euklidische Weglänge <math>A</math> ist:
 
  
<div style="text-align:center;"><math>\tilde{m} &lt; r := \mu(\partial Q \cap R)/\mu(\partial R \cap Q) &lt; m.</math></div>
 
 
==== Beweis: ====
 
==== Beweis: ====
Das zugrundeliegende Extremalproblem hat sein Maximum für Rechtecke mit den Seitenlängen <math>s</math> und <math>s + \hat{\iota}</math>. Mit <math>q := 3 - \hat{\iota}\tilde{s}</math> gilt min <math>r = \tilde{q} \le r \le</math> max <math>r = q</math>. Der Beweis für <math>n &gt; 2</math> verläuft analog.<math>\square</math>
+
Satz von Taylor<ref name="Remmert">[[w:Reinhold Remmert|<span class="wikipedia">Remmert, Reinhold</span>]]: ''Funktionentheorie 1'' : 3., verb. Aufl.; 1992; Springer; Berlin; ISBN 9783540552338, S. 165 f.</ref> und die Eigenschaften der Einheitswurzeln.<math>\square</math>
 +
 
 +
== Einzelnachweis ==
 +
<references />
 +
 
 
== Leseempfehlung ==
 
== Leseempfehlung ==
  

Version vom 31. März 2024, 22:58 Uhr

Willkommen bei MWiki

Sätze des Monats

Definition

Seien [math]\displaystyle{ f_n^*(z) = f(\eta_nz) }[/math] die Schwestern zur Taylorreihe [math]\displaystyle{ f(z) \in \mathcal{O}(\mathbb{D}) }[/math] um 0 auf dem Gebiet [math]\displaystyle{ \mathbb{D} \subseteq {}^{\omega}\mathbb{C} }[/math] mit [math]\displaystyle{ m, n \in {}^{\omega}\mathbb{N}^{*} }[/math] und [math]\displaystyle{ \eta_n^m := \underline{1}^{2^{\lceil m/n \rceil}} }[/math] sowie [math]\displaystyle{ \delta_n^*f = \tilde{2}(f - f_n^*) }[/math] die halben Schwesterabstände von [math]\displaystyle{ f }[/math]. Mit [math]\displaystyle{ \mu_n^m := m!n!/(m + n)! }[/math] bilden [math]\displaystyle{ \mu }[/math] und [math]\displaystyle{ \eta }[/math] einen eigenen auf Ebene der Taylorreihen auflösbaren Kalkül, der eine einfache und endliche geschlossene Darstellung von Integralen und Ableitungen erlaubt.[math]\displaystyle{ \triangle }[/math]

Darstellungssatz für Integrale

Die Taylorreihe (s. u.) [math]\displaystyle{ f(z) \in \mathcal{O}(\mathbb{D}) }[/math] um 0 auf [math]\displaystyle{ \mathbb{D} \subseteq {}^{\omega}\mathbb{C} }[/math] ergibt mit [math]\displaystyle{ \grave{m}, n \in {}^{\omega}\mathbb{N}^* }[/math]

[math]\displaystyle{ {\uparrow}_0^z...{\uparrow}_0^{\zeta_2}{f(\zeta_1){\downarrow}\zeta_1\;...\;{\downarrow}\zeta_n} = \widetilde{n!} f(z\mu_n) z^n.\square }[/math]

Darstellungssatz für Ableitungen

Mit [math]\displaystyle{ {}^{\widetilde{\nu}}\dot{\mathbb{C}} \subset \mathbb{D} \subseteq {}^{\omega}\mathbb{C} }[/math] ergeben die Taylorreihe

[math]\displaystyle{ f(z):=f(0) + {\LARGE{\textbf{+}}}_{m=1}^{\omega }{\widetilde{m!}\,{{f}^{(m)}}(0){z^m}}, }[/math]

[math]\displaystyle{ \varepsilon := \tilde{2}^j\tilde{r}, j \in {}^{\omega}\mathbb{Z}, n = \epsilon^{\sigma} \in {}^{\omega}\mathbb{N}^{*}, u :=\epsilon^{\tilde{n} \hat{\underline{\pi}}} }[/math] und der Konvergenzradius [math]\displaystyle{ r \in {}^{\nu}{\mathbb{R}}_{>0} }[/math] von [math]\displaystyle{ f }[/math]

[math]\displaystyle{ {{f}^{(n)}}(0)=2^{jn}\acute{n}!{\LARGE{\textbf{+}}}_{k=1}^{n}{\delta_n^* f(\tilde{2}^j u^k)}. }[/math]

Beweis:

Satz von Taylor[1] und die Eigenschaften der Einheitswurzeln.[math]\displaystyle{ \square }[/math]

Einzelnachweis

  1. Remmert, Reinhold: Funktionentheorie 1 : 3., verb. Aufl.; 1992; Springer; Berlin; ISBN 9783540552338, S. 165 f.

Leseempfehlung

Nichtstandardmathematik