Hauptseite: Unterschied zwischen den Versionen

Aus MWiki
Wechseln zu: Navigation, Suche
(EW-Verfahren)
(Darstellungssätze für Integrale und Ableitungen)
 
(66 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
 
__NOTOC__
 
__NOTOC__
 
= Willkommen bei MWiki =
 
= Willkommen bei MWiki =
== Satz des Monats ==
+
== Sätze des Monats ==
=== EW-Verfahren ===
+
=== Definition ===
Ist das lineare Gleichungssystems (LGS) <math>Ax = b \in  {}^{\nu}\mathbb{Q}^{n}</math> mit <math>n \in {}^{\nu}\mathbb{N}^*</math> eindeutig lösbar, berechnet das ''Einheitswurzelverfahren (EW-Verfahren)'' <math>x \in {}^{\nu}\mathbb{Q}^{n}</math> für <math>A \in {}^{\nu}\mathbb{Q}^{n \times n}</math> in <math>\mathcal{O}(n^2)</math>.
 
  
=== Beweis und Algorithmus ===
+
Seien <math>f_n^*(z) = f(\eta_nz)</math> die <em>Schwestern</em> zur Taylorreihe <math>f(z) \in \mathcal{O}(\mathbb{D})</math> um 0 auf dem Gebiet <math>\mathbb{D} \subseteq {}^{\omega}\mathbb{C}</math>  mit <math>m, n \in {}^{\omega}\mathbb{N}^{*}</math> und <math>\eta_n^m := \underline{1}^{2^{\lceil m/n \rceil}}</math> sowie <math>\delta_n^*f = \tilde{2}(f - f_n^*)</math> die <em>halben Schwesterabstände</em> von <math>f</math>. Mit <math>\mu_n^m := m!n!/(m + n)!</math> bilden <math>\mu</math> und <math>\eta</math> einen eigenen auf Ebene der Taylorreihen auflösbaren Kalkül, der eine einfache und endliche geschlossene Darstellung von Integralen und Ableitungen erlaubt.<math>\triangle</math>
Seien <math>R_1 := (r_{1jk}) = (r_{1kj}) = R_1^T \in {}^{\nu}\mathbb{C}^{n \times n}, n \in {}^{\nu}2\mathbb{N}^*, r_{11k} := 1</math> und für <math>j &gt; 1</math> sowie <math>n_{jk} := j + k - 3</math> sowohl <math>r_{1kj} := \hat{n}e^{i\tau n_{jk}/n}</math> mit <math>n_{jk} &lt; n</math> als auch <math>r_{1kj} := \hat{n}e^{i\tau(n_{jk} - \acute{n})/n}</math> mit <math>n_{jk} \ge n</math>. Durch Vertauschung der ersten Zeile bzw. Spalte mit der <math>j</math>-ten und entsprechender Vertauschung der übrigen Zeilen und Spalten entstehen die Matrizen <math>R_j = R_j^T</math> mit <math>j &gt; 1</math>. Es gilt offenbar rg<math>(R_j) = n</math> für alle <math>j</math>. Folgt <math>x_j = 1</math> für alle <math>j</math> aus <math>A(x - x^\prime) = (1 - x_j, ..., 1 - x_j)^T</math> und <math>Ax^\prime = b</math>, so ist höchstwahrscheinlich rg<math>(A) = n</math>.
+
 
 +
=== Darstellungssatz für Integrale ===
 +
 
 +
Die Taylorreihe (s. u.) <math>f(z) \in \mathcal{O}(\mathbb{D})</math> um 0 auf <math>\mathbb{D} \subseteq {}^{\omega}\mathbb{C}</math> ergibt mit <math>\grave{m}, n \in {}^{\omega}\mathbb{N}^*</math><div style="text-align:center;"><math>{\uparrow}_0^z...{\uparrow}_0^{\zeta_2}{f(\zeta_1){\downarrow}\zeta_1\;...\;{\downarrow}\zeta_n} = \widetilde{n!} f(z\mu_n) z^n.\square</math></div>
 +
 
 +
=== Darstellungssatz für Ableitungen ===
 +
 
 +
Mit <math>{}^{\widetilde{\nu}}\dot{\mathbb{C}} \subset \mathbb{D} \subseteq {}^{\omega}\mathbb{C}</math> ergeben die Taylorreihe<div style="text-align:center;"><math>f(z):=f(0) + {\LARGE{\textbf{+}}}_{m=1}^{\omega }{\widetilde{m!}\,{{f}^{(m)}}(0){z^m}},</math></div><math>\varepsilon := \tilde{2}^j\tilde{r}, j \in {}^{\omega}\mathbb{Z}, n = \epsilon^{\sigma} \in {}^{\omega}\mathbb{N}^{*}, u :=\epsilon^{\tilde{n} \hat{\underline{\pi}}}</math> und der Konvergenzradius <math>r \in {}^{\nu}{\mathbb{R}}_{&gt;0}</math> von <math>f</math><div style="text-align:center;"><math>{{f}^{(n)}}(0)=2^{jn}\acute{n}!{\LARGE{\textbf{+}}}_{k=1}^{n}{\delta_n^* f(\tilde{2}^j u^k)}.</math></div>
 +
 
 +
==== Beweis: ====
 +
Satz von Taylor<ref name="Remmert">[[w:Reinhold Remmert|<span class="wikipedia">Remmert, Reinhold</span>]]: ''Funktionentheorie 1'' : 3., verb. Aufl.; 1992; Springer; Berlin; ISBN 9783540552338, S. 165 f.</ref> und die Eigenschaften der Einheitswurzeln.<math>\square</math>
 +
 
 +
== Einzelnachweis ==
 +
<references />
  
Folgt <math>a_{jk} \le 0</math> für mindestens ein Paar <math>(j, k)</math> aus <math>A := (a_{jk})</math>, so werden die Summe <math>s_0 := \sum\limits_{j=1}^m{b_j\varepsilon^j}</math> mit einer beliebigen transzendenten Zahl <math>\varepsilon</math> und <math>s_k := \sum\limits_{j=1}^m{a_{jk}\varepsilon^j} \ne 0</math> für alle <math>k</math> gebildet. Für <math>s_k &lt; 0</math> wird <math>x_k</math> durch <math>-x_k</math> ersetzt. Dann wird ein Vielfaches von <math>s^Tx</math> bzw. <math>s_0</math> zu <math>Ax = b</math> addiert, sodass nunmehr <math>a_{jk} > 0</math> für alle <math>j, k</math> gilt. Mit <math>D_j := (d_{jk}), d_{jk} = \delta_{jk}/\prod\limits_{m=1}^n{a_{jm}}</math> und <math>C_j := D_j R_j = (c_{jk})</math> folgt <math>x_j^\prime = (AC_jx^\prime)_j = (C_jb)_j</math>. Gilt jedoch <math>x_j^\prime = 0 \ne b_j</math> für ein <math>j</math>, ist das LGS nicht lösbar. Die Übertragung ins Komplexe ist einfach.<math>\square</math>
 
 
== Leseempfehlung ==
 
== Leseempfehlung ==
  

Aktuelle Version vom 31. März 2024, 22:58 Uhr

Willkommen bei MWiki

Sätze des Monats

Definition

Seien [math]\displaystyle{ f_n^*(z) = f(\eta_nz) }[/math] die Schwestern zur Taylorreihe [math]\displaystyle{ f(z) \in \mathcal{O}(\mathbb{D}) }[/math] um 0 auf dem Gebiet [math]\displaystyle{ \mathbb{D} \subseteq {}^{\omega}\mathbb{C} }[/math] mit [math]\displaystyle{ m, n \in {}^{\omega}\mathbb{N}^{*} }[/math] und [math]\displaystyle{ \eta_n^m := \underline{1}^{2^{\lceil m/n \rceil}} }[/math] sowie [math]\displaystyle{ \delta_n^*f = \tilde{2}(f - f_n^*) }[/math] die halben Schwesterabstände von [math]\displaystyle{ f }[/math]. Mit [math]\displaystyle{ \mu_n^m := m!n!/(m + n)! }[/math] bilden [math]\displaystyle{ \mu }[/math] und [math]\displaystyle{ \eta }[/math] einen eigenen auf Ebene der Taylorreihen auflösbaren Kalkül, der eine einfache und endliche geschlossene Darstellung von Integralen und Ableitungen erlaubt.[math]\displaystyle{ \triangle }[/math]

Darstellungssatz für Integrale

Die Taylorreihe (s. u.) [math]\displaystyle{ f(z) \in \mathcal{O}(\mathbb{D}) }[/math] um 0 auf [math]\displaystyle{ \mathbb{D} \subseteq {}^{\omega}\mathbb{C} }[/math] ergibt mit [math]\displaystyle{ \grave{m}, n \in {}^{\omega}\mathbb{N}^* }[/math]

[math]\displaystyle{ {\uparrow}_0^z...{\uparrow}_0^{\zeta_2}{f(\zeta_1){\downarrow}\zeta_1\;...\;{\downarrow}\zeta_n} = \widetilde{n!} f(z\mu_n) z^n.\square }[/math]

Darstellungssatz für Ableitungen

Mit [math]\displaystyle{ {}^{\widetilde{\nu}}\dot{\mathbb{C}} \subset \mathbb{D} \subseteq {}^{\omega}\mathbb{C} }[/math] ergeben die Taylorreihe

[math]\displaystyle{ f(z):=f(0) + {\LARGE{\textbf{+}}}_{m=1}^{\omega }{\widetilde{m!}\,{{f}^{(m)}}(0){z^m}}, }[/math]

[math]\displaystyle{ \varepsilon := \tilde{2}^j\tilde{r}, j \in {}^{\omega}\mathbb{Z}, n = \epsilon^{\sigma} \in {}^{\omega}\mathbb{N}^{*}, u :=\epsilon^{\tilde{n} \hat{\underline{\pi}}} }[/math] und der Konvergenzradius [math]\displaystyle{ r \in {}^{\nu}{\mathbb{R}}_{>0} }[/math] von [math]\displaystyle{ f }[/math]

[math]\displaystyle{ {{f}^{(n)}}(0)=2^{jn}\acute{n}!{\LARGE{\textbf{+}}}_{k=1}^{n}{\delta_n^* f(\tilde{2}^j u^k)}. }[/math]

Beweis:

Satz von Taylor[1] und die Eigenschaften der Einheitswurzeln.[math]\displaystyle{ \square }[/math]

Einzelnachweis

  1. Remmert, Reinhold: Funktionentheorie 1 : 3., verb. Aufl.; 1992; Springer; Berlin; ISBN 9783540552338, S. 165 f.

Leseempfehlung

Nichtstandardmathematik