Hauptseite: Unterschied zwischen den Versionen

Aus MWiki
Wechseln zu: Navigation, Suche
(Intexverfahren)
K (Sätze von Green und Singmaster)
 
(61 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
 
__NOTOC__
 
__NOTOC__
 
= Willkommen bei MWiki =
 
= Willkommen bei MWiki =
== Satz des Monats ==
+
== Sätze des Monats ==
Das Intexverfahren löst jedes lösbare LP in <math>\mathcal{O}({\vartheta}^{3})</math>.
+
=== Satz von Green ===
  
== Beweis und Algorithmus ==
+
Mit <math>h</math>-Gebiet <math>\mathbb{D} \subseteq {}^{(\omega)}\mathbb{R}^{2}</math>, infinitesimalem <math>h = |{\downarrow}x|= |{\downarrow}y| = |\overset{\rightharpoonup}{\gamma}(s) - \gamma(s)| = \mathcal{O}({\tilde{\omega}}^{m})</math>, hinreichend großem <math>m \in \mathbb{N}^{*}, (x, y) \in \mathbb{D}, \mathbb{D}^{-} := \{(x, y) \in \mathbb{D} : (x + h, y + h) \in \mathbb{D}\}</math>, einem geschlossenen, im Gegenuhrzeigersinn durchlaufenen Weg <math>\gamma: [a, b[\rightarrow \partial \mathbb{D}</math> bei Wahl von <math>\overset{\rightharpoonup}{\gamma}(s) = \gamma(\overset{\rightharpoonup}{s})</math> gilt mit <math>s \in [a, b[, A \subseteq {[a, b]}^{2}</math> und hinreichend <math>\alpha</math>-stetigen Funktionen <math>u, v: \mathbb{D} \rightarrow \mathbb{R}</math> mit ggf. nicht stetigen Ableitungen <math>{\downarrow} u/{\downarrow} x, {\downarrow} u/{\downarrow} y, {\downarrow} v/{\downarrow} x</math> und <math>{\downarrow} v/{\downarrow} y</math><div style="text-align:center;"><math>{\uparrow}_{\gamma }{(u\,{\downarrow}x+v\,{\downarrow}y)}={\uparrow}_{(x,y)\in {\mathbb{D}^{-}}}{\left( \tfrac{{\downarrow} v}{{\downarrow} x}-\tfrac{{\downarrow} u}{{\downarrow} y} \right){\downarrow}(x,y)}.</math></div>
Zuerst werden <math>{b}^{T}y - {c}^{T}x \le 0, Ax \le b</math> sowie <math>{A}^{T}y \ge c</math> normiert und skaliert. Die <em>Höhe</em> <math>h</math> habe den Startwert <math>h_0 := s |\min \; \{b_1, ..., b_m, -d_1, ..., -d_n\}|</math> mit dem <em>Steigerungsfaktor</em> <math>s \in \, ]1, 2]</math>.</br>
 
Das LP min <math>\{h \in [0, h_0] : x \in {}^{\omega}\mathbb{R}_{\ge 0}^{n}, y \in {}^{\omega}\mathbb{R}_{\ge 0}^{m},{b}^{T}y - {c}^{T}x \le h, Ax - b \le (h, ..., h)^T \in {}^{\omega}\mathbb{R}_{\ge 0}^{m}, c - {A}^{T}y \le (h, ..., h)^T \in {}^{\omega}\mathbb{R}_{\ge 0}^{n}\}</math> hat <math>k</math> Restriktionen und den zulässigen inneren Startpunkt <math>(x_0, y_0, h_0/s)^{T} \in {}^{\omega}\mathbb{R}_{\ge 0}^{m+n+1}</math>, z. B. <math>(0, 0, h_0/s)^{T}</math>. Es identifiziert die zueinander dualen LPs max <math>\{{c}^{T}x : c \in {}^{\omega}\mathbb{R}^{n}, x \in {P}_{\ge 0}\}</math> und min <math>\{{b}^{T}y : y \in {}^{\omega}\mathbb{R}_{\ge 0}^{m}, {A}^{T}y \ge c\}</math>.
 
  
Der Punkt <math>p := (x, y, h)^T</math> approximiere den Schwerpunkt des Teilpolytops <math>P^*</math> zu <math>p_k^* := (\min p_k + \max p_k)/2</math>, bis <math>{|| \Delta p ||}_{1}</math> hinreichend klein ist. Hier hat <math>x</math> Vorrang vor <math>y</math>. Dann wird <math>p</math> über <math>{p}^{*}</math> in <math>\partial P^*</math> als <math>u</math> extrapoliert. Mit <math>p := p^* + (u - p^*)/s</math> wird <math>\partial P^*</math> gemieden. Darauf wird <math>p</math> tiefer erneut als Schwerpunkt approximiert. Nach optionalem Lösen aller LPs min<math>{}_{k} {h}_{k}</math> durch Bisektionsverfahren für <math>{h}_{k} \in {}^{\omega}\mathbb{R}_{\ge 0}</math> in jeweils <math>\mathcal{O}({\vartheta}^{2})</math> lässt sich <math>v \in {}^{\omega}\mathbb{R}^{k}</math> mit <math>v_k := \Delta{p}_{k} \Delta{h}_{k}/r</math> und <math>r :=</math> min<math>{}_{k} \Delta{h}_{k}</math> ermitteln. Vereinfacht sei <math>|\Delta{p}_{1}| = ... = |\Delta{p}_{m+n}|</math>.
+
==== Beweis: ====
 +
Der Beweis wird nur für <math>\mathbb{D}:= \{(x, y) : r \le x \le s, f(x) \le y \le g(x)\}, r, s \in {}^{(\omega)}\mathbb{R}, f, g : \partial \mathbb{D} \rightarrow {}^{(\omega)}\mathbb{R}</math> geführt, da das jeweils um <math>\check{\pi}</math> gedrehte Äquivalent analog resultiert mit jedem <math>h</math>-Gebiet als Vereinigung solcher Mengen. Da sich die fehlende Beziehung analog ergibt, beschränkt sich die Betrachtung auf <div style="text-align:center;"><math>{\uparrow}_{\gamma }{u\,{\downarrow}x}=-{\uparrow}_{(x,y)\in {\mathbb{D}^{-}}}{\tfrac{{\downarrow} u}{{\downarrow} y}{\downarrow}(x,y)}.</math></div> Unter Vernachlässigung der Teile von <math>\gamma</math> mit <math>{\downarrow}x = 0</math> zum Kurvenintegral wie von <math>s := h(u(r, g(r)) - u(t, g(t)))</math> gilt<div style="text-align:center;"><math>-{\uparrow}_{\gamma }{u\,{\downarrow}x}-s={\uparrow}_{t}^{r}{u(x,g(x)){\downarrow}x}-{\uparrow}_{t}^{r}{u(x,f(x)){\downarrow}x}={\uparrow}_{t}^{r}{{\uparrow}_{f(x)}^{g(x)}{\tfrac{{\downarrow} u}{{\downarrow} y}}{\downarrow}y{\downarrow}x}={\uparrow}_{(x,y)\in {\mathbb{D}^{-}}}{\tfrac{{\downarrow} u}{{\downarrow} y}{\downarrow}(x,y)}.\square</math></div>
  
Hierbei wäre min <math>{h}_{m+n+1}</math> für <math>p^* := p + tv</math> mit <math>t \in {}^{\omega}\mathbb{R}_{\ge 0}</math> und <math>{v}_{m+n+1} = 0</math> ebenso zu lösen. Folgt min<math>{}_{k} {h}_{k} r = 0</math>, wird aufgehört, andernfalls wiederholt, bis min <math>h = 0</math> oder min <math>h &gt; 0</math> feststeht.</br>
+
=== Satz von Singmaster ===
Falls erforderlich werden die Restriktionen vorübergehend um einen gleichen kleinen Betrag abgeschwächt. Da fast jeder Durchlauf <math>h</math> in <math>\mathcal{O}({\omega\vartheta}^{2})</math> wenigstens halbiert, liefert der starke Dualitätssatz die Behauptung.<math>\square</math>
 
  
 +
Es gibt maximal 8 verschiedene Binomialkoeffizienten gleichen Werts > 1.
 +
 +
==== Beweis: ====
 +
Die Existenz ist klar wegen <math>\tbinom{3003}{1} = \tbinom{78}{2} = \tbinom{15}{5} = \tbinom{14}{6}</math> und dem Aufbau des Pascalschen Dreiecks. Mit <math>p \in {}^{\omega }{\mathbb{P}}, a,b ,c, d \in {}^{\omega }{\mathbb{N^*}}, \hat{a} \le r := p - b, \hat{a} < \hat{c} \le n := p - d, b < d</math> und <math>s \notin \mathbb{P}</math> für alle <math>s \in [\max(r - \acute{a},\grave{n}), r]</math> ergeben die Stirlingformel <math>{n!}^2\sim\pi(\hat{n}+\tilde{3}){(\tilde{\epsilon}n)}^{\hat{n}}</math> und der Primzahlsatz <math>\omega\tbinom{r}{a} \le {}_\epsilon\omega\tbinom{n}{c}</math> für <math>p \rightarrow \omega.\square</math>
 
== Leseempfehlung ==
 
== Leseempfehlung ==
 +
 
[https://de.calameo.com/books/00377797710a3d3e2cb97 Nichtstandardmathematik]
 
[https://de.calameo.com/books/00377797710a3d3e2cb97 Nichtstandardmathematik]
  
 
[[en:Main Page]]
 
[[en:Main Page]]

Aktuelle Version vom 1. Mai 2024, 02:04 Uhr

Willkommen bei MWiki

Sätze des Monats

Satz von Green

Mit [math]\displaystyle{ h }[/math]-Gebiet [math]\displaystyle{ \mathbb{D} \subseteq {}^{(\omega)}\mathbb{R}^{2} }[/math], infinitesimalem [math]\displaystyle{ h = |{\downarrow}x|= |{\downarrow}y| = |\overset{\rightharpoonup}{\gamma}(s) - \gamma(s)| = \mathcal{O}({\tilde{\omega}}^{m}) }[/math], hinreichend großem [math]\displaystyle{ m \in \mathbb{N}^{*}, (x, y) \in \mathbb{D}, \mathbb{D}^{-} := \{(x, y) \in \mathbb{D} : (x + h, y + h) \in \mathbb{D}\} }[/math], einem geschlossenen, im Gegenuhrzeigersinn durchlaufenen Weg [math]\displaystyle{ \gamma: [a, b[\rightarrow \partial \mathbb{D} }[/math] bei Wahl von [math]\displaystyle{ \overset{\rightharpoonup}{\gamma}(s) = \gamma(\overset{\rightharpoonup}{s}) }[/math] gilt mit [math]\displaystyle{ s \in [a, b[, A \subseteq {[a, b]}^{2} }[/math] und hinreichend [math]\displaystyle{ \alpha }[/math]-stetigen Funktionen [math]\displaystyle{ u, v: \mathbb{D} \rightarrow \mathbb{R} }[/math] mit ggf. nicht stetigen Ableitungen [math]\displaystyle{ {\downarrow} u/{\downarrow} x, {\downarrow} u/{\downarrow} y, {\downarrow} v/{\downarrow} x }[/math] und [math]\displaystyle{ {\downarrow} v/{\downarrow} y }[/math]

[math]\displaystyle{ {\uparrow}_{\gamma }{(u\,{\downarrow}x+v\,{\downarrow}y)}={\uparrow}_{(x,y)\in {\mathbb{D}^{-}}}{\left( \tfrac{{\downarrow} v}{{\downarrow} x}-\tfrac{{\downarrow} u}{{\downarrow} y} \right){\downarrow}(x,y)}. }[/math]

Beweis:

Der Beweis wird nur für [math]\displaystyle{ \mathbb{D}:= \{(x, y) : r \le x \le s, f(x) \le y \le g(x)\}, r, s \in {}^{(\omega)}\mathbb{R}, f, g : \partial \mathbb{D} \rightarrow {}^{(\omega)}\mathbb{R} }[/math] geführt, da das jeweils um [math]\displaystyle{ \check{\pi} }[/math] gedrehte Äquivalent analog resultiert mit jedem [math]\displaystyle{ h }[/math]-Gebiet als Vereinigung solcher Mengen. Da sich die fehlende Beziehung analog ergibt, beschränkt sich die Betrachtung auf

[math]\displaystyle{ {\uparrow}_{\gamma }{u\,{\downarrow}x}=-{\uparrow}_{(x,y)\in {\mathbb{D}^{-}}}{\tfrac{{\downarrow} u}{{\downarrow} y}{\downarrow}(x,y)}. }[/math]

Unter Vernachlässigung der Teile von [math]\displaystyle{ \gamma }[/math] mit [math]\displaystyle{ {\downarrow}x = 0 }[/math] zum Kurvenintegral wie von [math]\displaystyle{ s := h(u(r, g(r)) - u(t, g(t))) }[/math] gilt

[math]\displaystyle{ -{\uparrow}_{\gamma }{u\,{\downarrow}x}-s={\uparrow}_{t}^{r}{u(x,g(x)){\downarrow}x}-{\uparrow}_{t}^{r}{u(x,f(x)){\downarrow}x}={\uparrow}_{t}^{r}{{\uparrow}_{f(x)}^{g(x)}{\tfrac{{\downarrow} u}{{\downarrow} y}}{\downarrow}y{\downarrow}x}={\uparrow}_{(x,y)\in {\mathbb{D}^{-}}}{\tfrac{{\downarrow} u}{{\downarrow} y}{\downarrow}(x,y)}.\square }[/math]

Satz von Singmaster

Es gibt maximal 8 verschiedene Binomialkoeffizienten gleichen Werts > 1.

Beweis:

Die Existenz ist klar wegen [math]\displaystyle{ \tbinom{3003}{1} = \tbinom{78}{2} = \tbinom{15}{5} = \tbinom{14}{6} }[/math] und dem Aufbau des Pascalschen Dreiecks. Mit [math]\displaystyle{ p \in {}^{\omega }{\mathbb{P}}, a,b ,c, d \in {}^{\omega }{\mathbb{N^*}}, \hat{a} \le r := p - b, \hat{a} \lt \hat{c} \le n := p - d, b \lt d }[/math] und [math]\displaystyle{ s \notin \mathbb{P} }[/math] für alle [math]\displaystyle{ s \in [\max(r - \acute{a},\grave{n}), r] }[/math] ergeben die Stirlingformel [math]\displaystyle{ {n!}^2\sim\pi(\hat{n}+\tilde{3}){(\tilde{\epsilon}n)}^{\hat{n}} }[/math] und der Primzahlsatz [math]\displaystyle{ \omega\tbinom{r}{a} \le {}_\epsilon\omega\tbinom{n}{c} }[/math] für [math]\displaystyle{ p \rightarrow \omega.\square }[/math]

Leseempfehlung

Nichtstandardmathematik