Hauptseite: Unterschied zwischen den Versionen

Aus MWiki
Wechseln zu: Navigation, Suche
(Hauptsätze)
K (Sätze von Green und Singmaster)
 
(47 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 2: Zeile 2:
 
= Willkommen bei MWiki =
 
= Willkommen bei MWiki =
 
== Sätze des Monats ==
 
== Sätze des Monats ==
Erster Hauptsatz der exakten Differential- und Integralrechnung für Kurvenintegrale: Die Funktion <math>F(z)=\int\limits_{\gamma }{f(\zeta )dB\zeta }</math> ist mit <math>\gamma: [d, x[ \, \cap \, C \rightarrow A \subseteq {}^{(\omega)}\mathbb{K}, C \subseteq \mathbb{R}, f: A \rightarrow {}^{(\omega)}\mathbb{K}, d \in [a, b[ \, \cap \, C</math>, bei Wahl von <math>\curvearrowright B \gamma(x) = \gamma(\curvearrowright D x)</math>, exakt <math>B</math>-differenzierbar und es gilt für alle <math>x \in [a, b[ \, \cap \, C</math> und <math>z = \gamma(x)</math>
+
=== Satz von Green ===
  
<div style="text-align:center;"><math>F' \curvearrowright B(z) = f(z).</math></div>
+
Mit <math>h</math>-Gebiet <math>\mathbb{D} \subseteq {}^{(\omega)}\mathbb{R}^{2}</math>, infinitesimalem <math>h = |{\downarrow}x|= |{\downarrow}y| = |\overset{\rightharpoonup}{\gamma}(s) - \gamma(s)| = \mathcal{O}({\tilde{\omega}}^{m})</math>, hinreichend großem <math>m \in \mathbb{N}^{*}, (x, y) \in \mathbb{D}, \mathbb{D}^{-} := \{(x, y) \in \mathbb{D} : (x + h, y + h) \in \mathbb{D}\}</math>, einem geschlossenen, im Gegenuhrzeigersinn durchlaufenen Weg <math>\gamma: [a, b[\rightarrow \partial \mathbb{D}</math> bei Wahl von <math>\overset{\rightharpoonup}{\gamma}(s) = \gamma(\overset{\rightharpoonup}{s})</math> gilt mit <math>s \in [a, b[, A \subseteq {[a, b]}^{2}</math> und hinreichend <math>\alpha</math>-stetigen Funktionen <math>u, v: \mathbb{D} \rightarrow \mathbb{R}</math> mit ggf. nicht stetigen Ableitungen <math>{\downarrow} u/{\downarrow} x, {\downarrow} u/{\downarrow} y, {\downarrow} v/{\downarrow} x</math> und <math>{\downarrow} v/{\downarrow} y</math><div style="text-align:center;"><math>{\uparrow}_{\gamma }{(u\,{\downarrow}x+v\,{\downarrow}y)}={\uparrow}_{(x,y)\in {\mathbb{D}^{-}}}{\left( \tfrac{{\downarrow} v}{{\downarrow} x}-\tfrac{{\downarrow} u}{{\downarrow} y} \right){\downarrow}(x,y)}.</math></div>
  
 +
==== Beweis: ====
 +
Der Beweis wird nur für <math>\mathbb{D}:= \{(x, y) : r \le x \le s, f(x) \le y \le g(x)\}, r, s \in {}^{(\omega)}\mathbb{R}, f, g : \partial \mathbb{D} \rightarrow {}^{(\omega)}\mathbb{R}</math> geführt, da das jeweils um <math>\check{\pi}</math> gedrehte Äquivalent analog resultiert mit jedem <math>h</math>-Gebiet als Vereinigung solcher Mengen. Da sich die fehlende Beziehung analog ergibt, beschränkt sich die Betrachtung auf <div style="text-align:center;"><math>{\uparrow}_{\gamma }{u\,{\downarrow}x}=-{\uparrow}_{(x,y)\in {\mathbb{D}^{-}}}{\tfrac{{\downarrow} u}{{\downarrow} y}{\downarrow}(x,y)}.</math></div> Unter Vernachlässigung der Teile von <math>\gamma</math> mit <math>{\downarrow}x = 0</math> zum Kurvenintegral wie von <math>s := h(u(r, g(r)) - u(t, g(t)))</math> gilt<div style="text-align:center;"><math>-{\uparrow}_{\gamma }{u\,{\downarrow}x}-s={\uparrow}_{t}^{r}{u(x,g(x)){\downarrow}x}-{\uparrow}_{t}^{r}{u(x,f(x)){\downarrow}x}={\uparrow}_{t}^{r}{{\uparrow}_{f(x)}^{g(x)}{\tfrac{{\downarrow} u}{{\downarrow} y}}{\downarrow}y{\downarrow}x}={\uparrow}_{(x,y)\in {\mathbb{D}^{-}}}{\tfrac{{\downarrow} u}{{\downarrow} y}{\downarrow}(x,y)}.\square</math></div>
  
Beweis: <math>dB(F(z))=\int\limits_{t\in [d,x]C}{f(\gamma (t)){{{{\gamma }'}}_{\curvearrowright }}D(t)dDt}-\int\limits_{t\in [d,x[ \, \cap \, C}{f(\gamma (t)){{{{\gamma }'}}_{\curvearrowright }}D(t)dDt}=\int\limits_{x}{f(\gamma (t))\frac{\gamma (\curvearrowright Dt)-\gamma (t)}{\curvearrowright Dt-t}dDt}=f(\gamma (x)){{{\gamma }'}_{\curvearrowright }}D(x)dDx=\,f(\gamma (x))(\curvearrowright B\gamma (x)-\gamma (x))=f(z)dBz.\square</math>
+
=== Satz von Singmaster ===
  
Zweiter Hauptsatz der exakten Differential- und Integralrechnung für Kurvenintegrale: Gemäß den Voraussetzungen von oben gilt mit <math>\gamma: [a, b[ \, \cap \, C \rightarrow {}^{(\omega)}\mathbb{K}</math>
+
Es gibt maximal 8 verschiedene Binomialkoeffizienten gleichen Werts > 1.
  
 +
==== Beweis: ====
 +
Die Existenz ist klar wegen <math>\tbinom{3003}{1} = \tbinom{78}{2} = \tbinom{15}{5} = \tbinom{14}{6}</math> und dem Aufbau des Pascalschen Dreiecks. Mit <math>p \in {}^{\omega }{\mathbb{P}}, a,b ,c, d \in {}^{\omega }{\mathbb{N^*}}, \hat{a} \le r := p - b, \hat{a} < \hat{c} \le n := p - d, b < d</math> und <math>s \notin \mathbb{P}</math> für alle <math>s \in [\max(r - \acute{a},\grave{n}), r]</math> ergeben die Stirlingformel <math>{n!}^2\sim\pi(\hat{n}+\tilde{3}){(\tilde{\epsilon}n)}^{\hat{n}}</math> und der Primzahlsatz <math>\omega\tbinom{r}{a} \le {}_\epsilon\omega\tbinom{n}{c}</math> für <math>p \rightarrow \omega.\square</math>
 +
== Leseempfehlung ==
  
<div style="text-align:center;"><math> F(\gamma (b))-F(\gamma (a))=\int\limits_{\gamma }{{{{{F}'}}_{\curvearrowright }}B(\zeta )dB\zeta }.</math></div>
 
 
 
Beweis: <math>F(\gamma (b))-F(\gamma (a))=\sum\limits_{t\in [a,b[ \, \cap \, C}{F(\curvearrowright B\,\gamma (t))}-F(\gamma (t))=\sum\limits_{t\in [a,b[ \, \cap \, C}{{{{{F}'}}_{\curvearrowright }}B(\gamma (t))(\curvearrowright B\,\gamma (t)-\gamma (t))}=\int\limits_{t\in [a,b[ \, \cap \, C}{{{{{F}'}}_{\curvearrowright }}B(\gamma (t)){{{{\gamma }'}}_{\curvearrowright }}D(t)dDt}=\int\limits_{\gamma }{{{{{F}'}}_{\curvearrowright }}B(\zeta )dB\zeta }.\square</math>
 
 
== Leseempfehlungen ==
 
 
[https://de.calameo.com/books/00377797710a3d3e2cb97 Nichtstandardmathematik]
 
[https://de.calameo.com/books/00377797710a3d3e2cb97 Nichtstandardmathematik]
  
 
[[en:Main Page]]
 
[[en:Main Page]]

Aktuelle Version vom 1. Mai 2024, 02:04 Uhr

Willkommen bei MWiki

Sätze des Monats

Satz von Green

Mit [math]\displaystyle{ h }[/math]-Gebiet [math]\displaystyle{ \mathbb{D} \subseteq {}^{(\omega)}\mathbb{R}^{2} }[/math], infinitesimalem [math]\displaystyle{ h = |{\downarrow}x|= |{\downarrow}y| = |\overset{\rightharpoonup}{\gamma}(s) - \gamma(s)| = \mathcal{O}({\tilde{\omega}}^{m}) }[/math], hinreichend großem [math]\displaystyle{ m \in \mathbb{N}^{*}, (x, y) \in \mathbb{D}, \mathbb{D}^{-} := \{(x, y) \in \mathbb{D} : (x + h, y + h) \in \mathbb{D}\} }[/math], einem geschlossenen, im Gegenuhrzeigersinn durchlaufenen Weg [math]\displaystyle{ \gamma: [a, b[\rightarrow \partial \mathbb{D} }[/math] bei Wahl von [math]\displaystyle{ \overset{\rightharpoonup}{\gamma}(s) = \gamma(\overset{\rightharpoonup}{s}) }[/math] gilt mit [math]\displaystyle{ s \in [a, b[, A \subseteq {[a, b]}^{2} }[/math] und hinreichend [math]\displaystyle{ \alpha }[/math]-stetigen Funktionen [math]\displaystyle{ u, v: \mathbb{D} \rightarrow \mathbb{R} }[/math] mit ggf. nicht stetigen Ableitungen [math]\displaystyle{ {\downarrow} u/{\downarrow} x, {\downarrow} u/{\downarrow} y, {\downarrow} v/{\downarrow} x }[/math] und [math]\displaystyle{ {\downarrow} v/{\downarrow} y }[/math]

[math]\displaystyle{ {\uparrow}_{\gamma }{(u\,{\downarrow}x+v\,{\downarrow}y)}={\uparrow}_{(x,y)\in {\mathbb{D}^{-}}}{\left( \tfrac{{\downarrow} v}{{\downarrow} x}-\tfrac{{\downarrow} u}{{\downarrow} y} \right){\downarrow}(x,y)}. }[/math]

Beweis:

Der Beweis wird nur für [math]\displaystyle{ \mathbb{D}:= \{(x, y) : r \le x \le s, f(x) \le y \le g(x)\}, r, s \in {}^{(\omega)}\mathbb{R}, f, g : \partial \mathbb{D} \rightarrow {}^{(\omega)}\mathbb{R} }[/math] geführt, da das jeweils um [math]\displaystyle{ \check{\pi} }[/math] gedrehte Äquivalent analog resultiert mit jedem [math]\displaystyle{ h }[/math]-Gebiet als Vereinigung solcher Mengen. Da sich die fehlende Beziehung analog ergibt, beschränkt sich die Betrachtung auf

[math]\displaystyle{ {\uparrow}_{\gamma }{u\,{\downarrow}x}=-{\uparrow}_{(x,y)\in {\mathbb{D}^{-}}}{\tfrac{{\downarrow} u}{{\downarrow} y}{\downarrow}(x,y)}. }[/math]

Unter Vernachlässigung der Teile von [math]\displaystyle{ \gamma }[/math] mit [math]\displaystyle{ {\downarrow}x = 0 }[/math] zum Kurvenintegral wie von [math]\displaystyle{ s := h(u(r, g(r)) - u(t, g(t))) }[/math] gilt

[math]\displaystyle{ -{\uparrow}_{\gamma }{u\,{\downarrow}x}-s={\uparrow}_{t}^{r}{u(x,g(x)){\downarrow}x}-{\uparrow}_{t}^{r}{u(x,f(x)){\downarrow}x}={\uparrow}_{t}^{r}{{\uparrow}_{f(x)}^{g(x)}{\tfrac{{\downarrow} u}{{\downarrow} y}}{\downarrow}y{\downarrow}x}={\uparrow}_{(x,y)\in {\mathbb{D}^{-}}}{\tfrac{{\downarrow} u}{{\downarrow} y}{\downarrow}(x,y)}.\square }[/math]

Satz von Singmaster

Es gibt maximal 8 verschiedene Binomialkoeffizienten gleichen Werts > 1.

Beweis:

Die Existenz ist klar wegen [math]\displaystyle{ \tbinom{3003}{1} = \tbinom{78}{2} = \tbinom{15}{5} = \tbinom{14}{6} }[/math] und dem Aufbau des Pascalschen Dreiecks. Mit [math]\displaystyle{ p \in {}^{\omega }{\mathbb{P}}, a,b ,c, d \in {}^{\omega }{\mathbb{N^*}}, \hat{a} \le r := p - b, \hat{a} \lt \hat{c} \le n := p - d, b \lt d }[/math] und [math]\displaystyle{ s \notin \mathbb{P} }[/math] für alle [math]\displaystyle{ s \in [\max(r - \acute{a},\grave{n}), r] }[/math] ergeben die Stirlingformel [math]\displaystyle{ {n!}^2\sim\pi(\hat{n}+\tilde{3}){(\tilde{\epsilon}n)}^{\hat{n}} }[/math] und der Primzahlsatz [math]\displaystyle{ \omega\tbinom{r}{a} \le {}_\epsilon\omega\tbinom{n}{c} }[/math] für [math]\displaystyle{ p \rightarrow \omega.\square }[/math]

Leseempfehlung

Nichtstandardmathematik