Hauptseite: Unterschied zwischen den Versionen

Aus MWiki
Wechseln zu: Navigation, Suche
(Zentrumsverfahren)
(Darstellungssätze für Integrale und Ableitungen)
 
(42 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
 
__NOTOC__
 
__NOTOC__
 
= Willkommen bei MWiki =
 
= Willkommen bei MWiki =
== Satz des Monats ==
+
== Sätze des Monats ==
Das Zentrumsverfahren löst jedes lösbare LP in <math>\mathcal{O}(\omega{\vartheta}^2)</math>.
+
=== Definition ===
  
== Beweis und Algorithmus ==
+
Seien <math>f_n^*(z) = f(\eta_nz)</math> die <em>Schwestern</em> zur Taylorreihe <math>f(z) \in \mathcal{O}(\mathbb{D})</math> um 0 auf dem Gebiet <math>\mathbb{D} \subseteq {}^{\omega}\mathbb{C}</math> mit <math>m, n \in {}^{\omega}\mathbb{N}^{*}</math> und <math>\eta_n^m := \underline{1}^{2^{\lceil m/n \rceil}}</math> sowie <math>\delta_n^*f = \tilde{2}(f - f_n^*)</math> die <em>halben Schwesterabstände</em> von <math>f</math>. Mit <math>\mu_n^m := m!n!/(m + n)!</math> bilden <math>\mu</math> und <math>\eta</math> einen eigenen auf Ebene der Taylorreihen auflösbaren Kalkül, der eine einfache und endliche geschlossene Darstellung von Integralen und Ableitungen erlaubt.<math>\triangle</math>
Beweis und Algorithmus: Sei <math>z := \grave{m} + n</math> und <math>d \in [0, 1]</math> die Dichte von <math>A</math>. Zuerst werden <math>{b}^{T}y - {c}^{T}x \le 0, Ax \le b</math> sowie <math>{A}^{T}y \ge c</math> normiert und skaliert. <math>P_r := \{(x, y)^T \in {}^{\omega}\mathbb{R}_{\ge 0}^{z} : {b}^{T}y - {c}^{T}x \le r \in [0, \check{r}], Ax - b \le \underline{r}_m, c - {A}^{T}y \le \underline{r}_n\}</math> habe den Radius <math>\check{r} := s|\min \; \{b_1, ..., b_m, -c_1, ..., -c_n\}|</math> und den Skalierungsfaktor <math>s \in [1, 2]</math>. Es folgt <math>\underline{0}_{z} \in \partial P_{\check{r}}</math>. Nach dem starken Dualitätssatz löst das LP min <math>\{ r \in [0, \check{r}] : (x, y)^T \in P_r\}</math> ebenso die LPs max <math>\{{c}^{T}x : c \in {}^{\omega}\mathbb{R}^{n}, x \in {P}_{\ge 0}\}</math> und min <math>\{{b}^{T}y : y \in {}^{\omega}\mathbb{R}_{\ge 0}^{m}, {A}^{T}y \ge c\}</math>.
 
  
 +
=== Darstellungssatz für Integrale ===
  
Seine Lösung ist der geometrische Schwerpunkt <math>g</math> des Polytops <math>P_0</math>. Mit <math>p_k^* := (\text{min}\,p_k + \text{max}\,p_k)/2</math> für <math>k = 1, ..., \grave{z}</math> wird <math>g</math> durch <math>p_0 := (x_0, y_0, r_0)^T</math> approximiert, bis <math>||\Delta p||_1</math> hinreichend klein ist. Die Lösung <math>t^o(x^o, y^o, r^o)^T</math> des zweidimensionalen LPs min <math>\{ r \in [0, \check{r}] : t \in {}^{\omega}\mathbb{R}_{&gt; 0}, t(x_0, y_0)^T \in P_r\}</math> approximiert <math>g</math> besser und erreicht <math>r \le \check{r}/\sqrt{\grave{z}}</math>. Dies wird mit <math>t^o(x^o, y^o)^T</math> wiederholt, bis ggf. <math>g \in P_0</math> in <math>\mathcal{O}({}_z\check{r} {}_e\check{r}dmn)</math> berechnet ist. Zahlen der Länge <math>\mathcal{O}({\omega})</math> lassen sich bekanntlich nur in <math>\mathcal{O}(\vartheta)</math> abarbeiten.
+
Die Taylorreihe (s. u.) <math>f(z) \in \mathcal{O}(\mathbb{D})</math> um 0 auf <math>\mathbb{D} \subseteq {}^{\omega}\mathbb{C}</math> ergibt mit <math>\grave{m}, n \in {}^{\omega}\mathbb{N}^*</math><div style="text-align:center;"><math>{\uparrow}_0^z...{\uparrow}_0^{\zeta_2}{f(\zeta_1){\downarrow}\zeta_1\;...\;{\downarrow}\zeta_n} = \widetilde{n!} f(z\mu_n) z^n.\square</math></div>
  
 +
=== Darstellungssatz für Ableitungen ===
  
Das Lösen aller zweidimensionalen LPs <math>\text{min}_k r_k</math> durch Bisektionsverfahren für <math>r_k \in {}^{\omega}\mathbb{R}_{\ge 0}</math> und <math>k = 1, ..., z</math> in jeweils <math>\mathcal{O}({\vartheta}^2)</math> ermittelt <math>q \in {}^{\omega}\mathbb{R}^k</math> mit <math>q_k := \Delta p_k \Delta r_k/r</math> und <math>r := \text{min}_k \Delta r_k</math>. Vereinfacht sei <math>|\Delta p_1| = … = |\Delta p_{z}|</math>. Hierbei wäre min <math>r_{\grave{z}}</math> für <math>p^* := p + wq</math> mit <math>w \in {}^{\omega}\mathbb{R}_{\ge 0}</math> ebenso zu lösen. Folgt <math>\text{min}_k \Delta r_k r = 0</math>, wird aufgehört, andernfalls wiederholt bis min <math>r = 0</math> oder min <math>r &gt; 0</math> feststeht. Falls erforderlich werden die Restriktionen vorübergehend um einen gleichen kleinen Betrag abgeschwächt.<math>\square</math>
+
Mit <math>{}^{\widetilde{\nu}}\dot{\mathbb{C}} \subset \mathbb{D} \subseteq {}^{\omega}\mathbb{C}</math> ergeben die Taylorreihe<div style="text-align:center;"><math>f(z):=f(0) + {\LARGE{\textbf{+}}}_{m=1}^{\omega }{\widetilde{m!}\,{{f}^{(m)}}(0){z^m}},</math></div><math>\varepsilon := \tilde{2}^j\tilde{r}, j \in {}^{\omega}\mathbb{Z}, n = \epsilon^{\sigma} \in {}^{\omega}\mathbb{N}^{*}, u :=\epsilon^{\tilde{n} \hat{\underline{\pi}}}</math> und der Konvergenzradius <math>r \in {}^{\nu}{\mathbb{R}}_{&gt;0}</math> von <math>f</math><div style="text-align:center;"><math>{{f}^{(n)}}(0)=2^{jn}\acute{n}!{\LARGE{\textbf{+}}}_{k=1}^{n}{\delta_n^* f(\tilde{2}^j u^k)}.</math></div>
 +
 
 +
==== Beweis: ====
 +
Satz von Taylor<ref name="Remmert">[[w:Reinhold Remmert|<span class="wikipedia">Remmert, Reinhold</span>]]: ''Funktionentheorie 1'' : 3., verb. Aufl.; 1992; Springer; Berlin; ISBN 9783540552338, S. 165 f.</ref> und die Eigenschaften der Einheitswurzeln.<math>\square</math>
 +
 
 +
== Einzelnachweis ==
 +
<references />
  
 
== Leseempfehlung ==
 
== Leseempfehlung ==
 +
 
[https://de.calameo.com/books/00377797710a3d3e2cb97 Nichtstandardmathematik]
 
[https://de.calameo.com/books/00377797710a3d3e2cb97 Nichtstandardmathematik]
  
 
[[en:Main Page]]
 
[[en:Main Page]]

Aktuelle Version vom 31. März 2024, 22:58 Uhr

Willkommen bei MWiki

Sätze des Monats

Definition

Seien [math]\displaystyle{ f_n^*(z) = f(\eta_nz) }[/math] die Schwestern zur Taylorreihe [math]\displaystyle{ f(z) \in \mathcal{O}(\mathbb{D}) }[/math] um 0 auf dem Gebiet [math]\displaystyle{ \mathbb{D} \subseteq {}^{\omega}\mathbb{C} }[/math] mit [math]\displaystyle{ m, n \in {}^{\omega}\mathbb{N}^{*} }[/math] und [math]\displaystyle{ \eta_n^m := \underline{1}^{2^{\lceil m/n \rceil}} }[/math] sowie [math]\displaystyle{ \delta_n^*f = \tilde{2}(f - f_n^*) }[/math] die halben Schwesterabstände von [math]\displaystyle{ f }[/math]. Mit [math]\displaystyle{ \mu_n^m := m!n!/(m + n)! }[/math] bilden [math]\displaystyle{ \mu }[/math] und [math]\displaystyle{ \eta }[/math] einen eigenen auf Ebene der Taylorreihen auflösbaren Kalkül, der eine einfache und endliche geschlossene Darstellung von Integralen und Ableitungen erlaubt.[math]\displaystyle{ \triangle }[/math]

Darstellungssatz für Integrale

Die Taylorreihe (s. u.) [math]\displaystyle{ f(z) \in \mathcal{O}(\mathbb{D}) }[/math] um 0 auf [math]\displaystyle{ \mathbb{D} \subseteq {}^{\omega}\mathbb{C} }[/math] ergibt mit [math]\displaystyle{ \grave{m}, n \in {}^{\omega}\mathbb{N}^* }[/math]

[math]\displaystyle{ {\uparrow}_0^z...{\uparrow}_0^{\zeta_2}{f(\zeta_1){\downarrow}\zeta_1\;...\;{\downarrow}\zeta_n} = \widetilde{n!} f(z\mu_n) z^n.\square }[/math]

Darstellungssatz für Ableitungen

Mit [math]\displaystyle{ {}^{\widetilde{\nu}}\dot{\mathbb{C}} \subset \mathbb{D} \subseteq {}^{\omega}\mathbb{C} }[/math] ergeben die Taylorreihe

[math]\displaystyle{ f(z):=f(0) + {\LARGE{\textbf{+}}}_{m=1}^{\omega }{\widetilde{m!}\,{{f}^{(m)}}(0){z^m}}, }[/math]

[math]\displaystyle{ \varepsilon := \tilde{2}^j\tilde{r}, j \in {}^{\omega}\mathbb{Z}, n = \epsilon^{\sigma} \in {}^{\omega}\mathbb{N}^{*}, u :=\epsilon^{\tilde{n} \hat{\underline{\pi}}} }[/math] und der Konvergenzradius [math]\displaystyle{ r \in {}^{\nu}{\mathbb{R}}_{>0} }[/math] von [math]\displaystyle{ f }[/math]

[math]\displaystyle{ {{f}^{(n)}}(0)=2^{jn}\acute{n}!{\LARGE{\textbf{+}}}_{k=1}^{n}{\delta_n^* f(\tilde{2}^j u^k)}. }[/math]

Beweis:

Satz von Taylor[1] und die Eigenschaften der Einheitswurzeln.[math]\displaystyle{ \square }[/math]

Einzelnachweis

  1. Remmert, Reinhold: Funktionentheorie 1 : 3., verb. Aufl.; 1992; Springer; Berlin; ISBN 9783540552338, S. 165 f.

Leseempfehlung

Nichtstandardmathematik