Hauptseite: Unterschied zwischen den Versionen

Aus MWiki
Wechseln zu: Navigation, Suche
(Leibnizsche Differentiationsregel)
(Darstellungssätze für Integrale und Ableitungen)
 
(39 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
 
__NOTOC__
 
__NOTOC__
 
= Willkommen bei MWiki =
 
= Willkommen bei MWiki =
== Satz des Monats ==
+
== Sätze des Monats ==
=== Leibnizsche Differentiationsregel ===
+
=== Definition ===
  
Für <math>f: {}^{(\omega)}\mathbb{K}^{n+1} \rightarrow {}^{(\omega)}\mathbb{K}, a, b: {}^{(\omega)}\mathbb{K}^{n} \rightarrow {}^{(\omega)}\mathbb{K}, \curvearrowright B x := {(s, {x}_{2}, ..., {x}_{n})}^{T}</math> und <math>s \in {}^{(\omega)}\mathbb{K} \setminus \{{x}_{1}\}</math> gilt bei Wahl von <math>\curvearrowright D a(x) = a(\curvearrowright B x)</math> und <math>\curvearrowright D b(x) = b(\curvearrowright B x)</math>,<div style="text-align:center;"><math>\frac{\partial }{\partial {{x}_{1}}}\left( \int\limits_{a(x)}^{b(x)}{f(x,t)dDt} \right)=\int\limits_{a(x)}^{b(x)}{\frac{\partial f(x,t)}{\partial {{x}_{1}}}dDt}+\frac{\partial b(x)}{\partial {{x}_{1}}}f(\curvearrowright Bx,b(x))-\frac{\partial a(x)}{\partial {{x}_{1}}}f(\curvearrowright Bx,a(x)).</math></div>
+
Seien <math>f_n^*(z) = f(\eta_nz)</math> die <em>Schwestern</em> zur Taylorreihe <math>f(z) \in \mathcal{O}(\mathbb{D})</math> um 0 auf dem Gebiet <math>\mathbb{D} \subseteq {}^{\omega}\mathbb{C}</math>  mit <math>m, n \in {}^{\omega}\mathbb{N}^{*}</math> und <math>\eta_n^m := \underline{1}^{2^{\lceil m/n \rceil}}</math> sowie <math>\delta_n^*f = \tilde{2}(f - f_n^*)</math> die <em>halben Schwesterabstände</em> von <math>f</math>. Mit <math>\mu_n^m := m!n!/(m + n)!</math> bilden <math>\mu</math> und <math>\eta</math> einen eigenen auf Ebene der Taylorreihen auflösbaren Kalkül, der eine einfache und endliche geschlossene Darstellung von Integralen und Ableitungen erlaubt.<math>\triangle</math>
 +
 
 +
=== Darstellungssatz für Integrale ===
 +
 
 +
Die Taylorreihe (s. u.) <math>f(z) \in \mathcal{O}(\mathbb{D})</math> um 0 auf <math>\mathbb{D} \subseteq {}^{\omega}\mathbb{C}</math> ergibt mit <math>\grave{m}, n \in {}^{\omega}\mathbb{N}^*</math><div style="text-align:center;"><math>{\uparrow}_0^z...{\uparrow}_0^{\zeta_2}{f(\zeta_1){\downarrow}\zeta_1\;...\;{\downarrow}\zeta_n} = \widetilde{n!} f(z\mu_n) z^n.\square</math></div>
 +
 
 +
=== Darstellungssatz für Ableitungen ===
 +
 
 +
Mit <math>{}^{\widetilde{\nu}}\dot{\mathbb{C}} \subset \mathbb{D} \subseteq {}^{\omega}\mathbb{C}</math> ergeben die Taylorreihe<div style="text-align:center;"><math>f(z):=f(0) + {\LARGE{\textbf{+}}}_{m=1}^{\omega }{\widetilde{m!}\,{{f}^{(m)}}(0){z^m}},</math></div><math>\varepsilon := \tilde{2}^j\tilde{r}, j \in {}^{\omega}\mathbb{Z}, n = \epsilon^{\sigma} \in {}^{\omega}\mathbb{N}^{*}, u :=\epsilon^{\tilde{n} \hat{\underline{\pi}}}</math> und der Konvergenzradius <math>r \in {}^{\nu}{\mathbb{R}}_{&gt;0}</math> von <math>f</math><div style="text-align:center;"><math>{{f}^{(n)}}(0)=2^{jn}\acute{n}!{\LARGE{\textbf{+}}}_{k=1}^{n}{\delta_n^* f(\tilde{2}^j u^k)}.</math></div>
  
 
==== Beweis: ====
 
==== Beweis: ====
<div style="text-align:center;"><math>\begin{aligned}\frac{\partial }{\partial {{x}_{1}}}\left( \int\limits_{a(x)}^{b(x)}{f(x,t)dDt} \right) &amp;={\left( \int\limits_{a(\curvearrowright Bx)}^{b(\curvearrowright Bx)}{f(\curvearrowright Bx,t)dDt}-\int\limits_{a(x)}^{b(x)}{f(x,t)dDt} \right)}/{\partial {{x}_{1}}}\;={\left( \int\limits_{a(x)}^{b(x)}{(f(\curvearrowright Bx,t)-f(x,t))dDt}+\int\limits_{b(x)}^{b(\curvearrowright Bx)}{f(\curvearrowright Bx,t)dDt}-\int\limits_{a(x)}^{a(\curvearrowright Bx)}{f(\curvearrowright Bx,t)dDt} \right)}/{\partial {{x}_{1}}}\; \\ &amp;=\int\limits_{a(x)}^{b(x)}{\frac{\partial f(x,t)}{\partial {{x}_{1}}}dDt}+\frac{\partial b(x)}{\partial {{x}_{1}}}f(\curvearrowright Bx,b(x))-\frac{\partial a(x)}{\partial {{x}_{1}}}f(\curvearrowright Bx,a(x)).\square\end{aligned}</math></div>
+
Satz von Taylor<ref name="Remmert">[[w:Reinhold Remmert|<span class="wikipedia">Remmert, Reinhold</span>]]: ''Funktionentheorie 1'' : 3., verb. Aufl.; 1992; Springer; Berlin; ISBN 9783540552338, S. 165 f.</ref> und die Eigenschaften der Einheitswurzeln.<math>\square</math>
 +
 
 +
== Einzelnachweis ==
 +
<references />
  
 
== Leseempfehlung ==
 
== Leseempfehlung ==

Aktuelle Version vom 31. März 2024, 22:58 Uhr

Willkommen bei MWiki

Sätze des Monats

Definition

Seien [math]\displaystyle{ f_n^*(z) = f(\eta_nz) }[/math] die Schwestern zur Taylorreihe [math]\displaystyle{ f(z) \in \mathcal{O}(\mathbb{D}) }[/math] um 0 auf dem Gebiet [math]\displaystyle{ \mathbb{D} \subseteq {}^{\omega}\mathbb{C} }[/math] mit [math]\displaystyle{ m, n \in {}^{\omega}\mathbb{N}^{*} }[/math] und [math]\displaystyle{ \eta_n^m := \underline{1}^{2^{\lceil m/n \rceil}} }[/math] sowie [math]\displaystyle{ \delta_n^*f = \tilde{2}(f - f_n^*) }[/math] die halben Schwesterabstände von [math]\displaystyle{ f }[/math]. Mit [math]\displaystyle{ \mu_n^m := m!n!/(m + n)! }[/math] bilden [math]\displaystyle{ \mu }[/math] und [math]\displaystyle{ \eta }[/math] einen eigenen auf Ebene der Taylorreihen auflösbaren Kalkül, der eine einfache und endliche geschlossene Darstellung von Integralen und Ableitungen erlaubt.[math]\displaystyle{ \triangle }[/math]

Darstellungssatz für Integrale

Die Taylorreihe (s. u.) [math]\displaystyle{ f(z) \in \mathcal{O}(\mathbb{D}) }[/math] um 0 auf [math]\displaystyle{ \mathbb{D} \subseteq {}^{\omega}\mathbb{C} }[/math] ergibt mit [math]\displaystyle{ \grave{m}, n \in {}^{\omega}\mathbb{N}^* }[/math]

[math]\displaystyle{ {\uparrow}_0^z...{\uparrow}_0^{\zeta_2}{f(\zeta_1){\downarrow}\zeta_1\;...\;{\downarrow}\zeta_n} = \widetilde{n!} f(z\mu_n) z^n.\square }[/math]

Darstellungssatz für Ableitungen

Mit [math]\displaystyle{ {}^{\widetilde{\nu}}\dot{\mathbb{C}} \subset \mathbb{D} \subseteq {}^{\omega}\mathbb{C} }[/math] ergeben die Taylorreihe

[math]\displaystyle{ f(z):=f(0) + {\LARGE{\textbf{+}}}_{m=1}^{\omega }{\widetilde{m!}\,{{f}^{(m)}}(0){z^m}}, }[/math]

[math]\displaystyle{ \varepsilon := \tilde{2}^j\tilde{r}, j \in {}^{\omega}\mathbb{Z}, n = \epsilon^{\sigma} \in {}^{\omega}\mathbb{N}^{*}, u :=\epsilon^{\tilde{n} \hat{\underline{\pi}}} }[/math] und der Konvergenzradius [math]\displaystyle{ r \in {}^{\nu}{\mathbb{R}}_{>0} }[/math] von [math]\displaystyle{ f }[/math]

[math]\displaystyle{ {{f}^{(n)}}(0)=2^{jn}\acute{n}!{\LARGE{\textbf{+}}}_{k=1}^{n}{\delta_n^* f(\tilde{2}^j u^k)}. }[/math]

Beweis:

Satz von Taylor[1] und die Eigenschaften der Einheitswurzeln.[math]\displaystyle{ \square }[/math]

Einzelnachweis

  1. Remmert, Reinhold: Funktionentheorie 1 : 3., verb. Aufl.; 1992; Springer; Berlin; ISBN 9783540552338, S. 165 f.

Leseempfehlung

Nichtstandardmathematik