Hauptseite: Unterschied zwischen den Versionen

Aus MWiki
Wechseln zu: Navigation, Suche
(Leibnizsche Differentiationsregel)
K (Sätze von Green und Singmaster)
 
(41 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
 
__NOTOC__
 
__NOTOC__
 
= Willkommen bei MWiki =
 
= Willkommen bei MWiki =
=== Cauchyscher Integralsatz ===
+
== Sätze des Monats ==
 +
=== Satz von Green ===
  
Für die Nachbarschaftsrelationen <math>B \subseteq {A}^{2}</math> und <math>D \subseteq [a, b]</math> mit einer einfach zusammenhängenden <math>h</math>-Menge <math>A \subseteq {}^{\omega}\mathbb{C}</math>, infinitesimalem <math>h</math> sowie einer holomorphen Funktion <math>f: A \rightarrow {}^{\omega}\mathbb{C}</math> und einem geschlossenen Weg <math>\gamma: [a, b[\rightarrow \partial A</math>, wenn <math>\curvearrowright B \gamma(t) = \gamma(\curvearrowright D t)</math> mit <math>t \in [a, b[</math> gewählt wird, gilt
+
Mit <math>h</math>-Gebiet <math>\mathbb{D} \subseteq {}^{(\omega)}\mathbb{R}^{2}</math>, infinitesimalem <math>h = |{\downarrow}x|= |{\downarrow}y| = |\overset{\rightharpoonup}{\gamma}(s) - \gamma(s)| = \mathcal{O}({\tilde{\omega}}^{m})</math>, hinreichend großem <math>m \in \mathbb{N}^{*}, (x, y) \in \mathbb{D}, \mathbb{D}^{-} := \{(x, y) \in \mathbb{D} : (x + h, y + h) \in \mathbb{D}\}</math>, einem geschlossenen, im Gegenuhrzeigersinn durchlaufenen Weg <math>\gamma: [a, b[\rightarrow \partial \mathbb{D}</math> bei Wahl von <math>\overset{\rightharpoonup}{\gamma}(s) = \gamma(\overset{\rightharpoonup}{s})</math> gilt mit <math>s \in [a, b[, A \subseteq {[a, b]}^{2}</math> und hinreichend <math>\alpha</math>-stetigen Funktionen <math>u, v: \mathbb{D} \rightarrow \mathbb{R}</math> mit ggf. nicht stetigen Ableitungen <math>{\downarrow} u/{\downarrow} x, {\downarrow} u/{\downarrow} y, {\downarrow} v/{\downarrow} x</math> und <math>{\downarrow} v/{\downarrow} y</math><div style="text-align:center;"><math>{\uparrow}_{\gamma }{(u\,{\downarrow}x+v\,{\downarrow}y)}={\uparrow}_{(x,y)\in {\mathbb{D}^{-}}}{\left( \tfrac{{\downarrow} v}{{\downarrow} x}-\tfrac{{\downarrow} u}{{\downarrow} y} \right){\downarrow}(x,y)}.</math></div>
<div style="text-align:center;"><math>\int\limits_{\gamma }{f(z)dBz}=0.</math></div>
 
  
'''Beweis:''' Aufgrund der Cauchy-Riemannschen partiellen Differentialgleichungen und des Satzes von Green gilt mit <math>x := \text{Re} \, z, y := \text{Im} \, z, u := \text{Re} \, f, v := \text{Im} \, f</math> und <math>{A}^{-} := \{z \in A : z + h + ih \in A\}</math>
+
==== Beweis: ====
 +
Der Beweis wird nur für <math>\mathbb{D}:= \{(x, y) : r \le x \le s, f(x) \le y \le g(x)\}, r, s \in {}^{(\omega)}\mathbb{R}, f, g : \partial \mathbb{D} \rightarrow {}^{(\omega)}\mathbb{R}</math> geführt, da das jeweils um <math>\check{\pi}</math> gedrehte Äquivalent analog resultiert mit jedem <math>h</math>-Gebiet als Vereinigung solcher Mengen. Da sich die fehlende Beziehung analog ergibt, beschränkt sich die Betrachtung auf <div style="text-align:center;"><math>{\uparrow}_{\gamma }{u\,{\downarrow}x}=-{\uparrow}_{(x,y)\in {\mathbb{D}^{-}}}{\tfrac{{\downarrow} u}{{\downarrow} y}{\downarrow}(x,y)}.</math></div> Unter Vernachlässigung der Teile von <math>\gamma</math> mit <math>{\downarrow}x = 0</math> zum Kurvenintegral wie von <math>s := h(u(r, g(r)) - u(t, g(t)))</math> gilt<div style="text-align:center;"><math>-{\uparrow}_{\gamma }{u\,{\downarrow}x}-s={\uparrow}_{t}^{r}{u(x,g(x)){\downarrow}x}-{\uparrow}_{t}^{r}{u(x,f(x)){\downarrow}x}={\uparrow}_{t}^{r}{{\uparrow}_{f(x)}^{g(x)}{\tfrac{{\downarrow} u}{{\downarrow} y}}{\downarrow}y{\downarrow}x}={\uparrow}_{(x,y)\in {\mathbb{D}^{-}}}{\tfrac{{\downarrow} u}{{\downarrow} y}{\downarrow}(x,y)}.\square</math></div>
  
<div style="text-align:center;"><math>\int\limits_{\gamma }{f(z)dBz}=\int\limits_{\gamma }{\left( u+iv \right)\left( dBx+idBy \right)}=\int\limits_{z\in {{A}^{-}}}{\left( i\left( \frac{\partial Bu}{\partial Bx}-\frac{\partial Bv}{\partial By} \right)-\left( \frac{\partial Bv}{\partial Bx}+\frac{\partial Bu}{\partial By} \right) \right)dB(x,y)}=0.\square</math></div>
+
=== Satz von Singmaster ===
  
=== Fundamentalsatz der Algebra ===
+
Es gibt maximal 8 verschiedene Binomialkoeffizienten gleichen Werts > 1.
  
Für jedes nicht-konstante Polynom <math>p \in {}^{(\omega)}\mathbb{C}</math> gibt es ein <math>z \in {}^{(\omega)}\mathbb{C}</math> mit <math>p(z) = 0</math>.
+
==== Beweis: ====
 +
Die Existenz ist klar wegen <math>\tbinom{3003}{1} = \tbinom{78}{2} = \tbinom{15}{5} = \tbinom{14}{6}</math> und dem Aufbau des Pascalschen Dreiecks. Mit <math>p \in {}^{\omega }{\mathbb{P}}, a,b ,c, d \in {}^{\omega }{\mathbb{N^*}}, \hat{a} \le r := p - b, \hat{a} < \hat{c} \le n := p - d, b < d</math> und <math>s \notin \mathbb{P}</math> für alle <math>s \in [\max(r - \acute{a},\grave{n}), r]</math> ergeben die Stirlingformel <math>{n!}^2\sim\pi(\hat{n}+\tilde{3}){(\tilde{\epsilon}n)}^{\hat{n}}</math> und der Primzahlsatz <math>\omega\tbinom{r}{a} \le {}_\epsilon\omega\tbinom{n}{c}</math> für <math>p \rightarrow \omega.\square</math>
 +
== Leseempfehlung ==
  
'''Indirekter Beweis:''' Durch affin-lineare Variablensubstitutionen läst sich <math>1/p(0) \ne \mathcal{O}(\text{d0})</math> erreichen. Die Annahme von <math>p(z) \ne 0</math> für alle <math>z \in {}^{(\omega)}\mathbb{C}</math> ergibt für das holomorphe <math>f(z) := 1/p(z)</math> wegen <math>f(1/\text{d0}) = \mathcal{O}(\text{d0})</math>.
 
 
Aufgrund der Mittelwertungleichung <math>|f(0)| \le {|f|}_{\gamma}</math> gilt mit <math>\gamma = \partial\mathbb{B}_{r}(0)</math> und beliebigem <math>r \in {}^{(\omega)}\mathbb{R}_{&gt;0}</math> also <math>f(0) = \mathcal{O}(\text{d0})</math> im Widerspruch zur Voraussetzung.<math>\square</math>
 
 
== Leseempfehlungen ==
 
 
[https://de.calameo.com/books/00377797710a3d3e2cb97 Nichtstandardmathematik]
 
[https://de.calameo.com/books/00377797710a3d3e2cb97 Nichtstandardmathematik]
  
 
[[en:Main Page]]
 
[[en:Main Page]]

Aktuelle Version vom 1. Mai 2024, 02:04 Uhr

Willkommen bei MWiki

Sätze des Monats

Satz von Green

Mit [math]\displaystyle{ h }[/math]-Gebiet [math]\displaystyle{ \mathbb{D} \subseteq {}^{(\omega)}\mathbb{R}^{2} }[/math], infinitesimalem [math]\displaystyle{ h = |{\downarrow}x|= |{\downarrow}y| = |\overset{\rightharpoonup}{\gamma}(s) - \gamma(s)| = \mathcal{O}({\tilde{\omega}}^{m}) }[/math], hinreichend großem [math]\displaystyle{ m \in \mathbb{N}^{*}, (x, y) \in \mathbb{D}, \mathbb{D}^{-} := \{(x, y) \in \mathbb{D} : (x + h, y + h) \in \mathbb{D}\} }[/math], einem geschlossenen, im Gegenuhrzeigersinn durchlaufenen Weg [math]\displaystyle{ \gamma: [a, b[\rightarrow \partial \mathbb{D} }[/math] bei Wahl von [math]\displaystyle{ \overset{\rightharpoonup}{\gamma}(s) = \gamma(\overset{\rightharpoonup}{s}) }[/math] gilt mit [math]\displaystyle{ s \in [a, b[, A \subseteq {[a, b]}^{2} }[/math] und hinreichend [math]\displaystyle{ \alpha }[/math]-stetigen Funktionen [math]\displaystyle{ u, v: \mathbb{D} \rightarrow \mathbb{R} }[/math] mit ggf. nicht stetigen Ableitungen [math]\displaystyle{ {\downarrow} u/{\downarrow} x, {\downarrow} u/{\downarrow} y, {\downarrow} v/{\downarrow} x }[/math] und [math]\displaystyle{ {\downarrow} v/{\downarrow} y }[/math]

[math]\displaystyle{ {\uparrow}_{\gamma }{(u\,{\downarrow}x+v\,{\downarrow}y)}={\uparrow}_{(x,y)\in {\mathbb{D}^{-}}}{\left( \tfrac{{\downarrow} v}{{\downarrow} x}-\tfrac{{\downarrow} u}{{\downarrow} y} \right){\downarrow}(x,y)}. }[/math]

Beweis:

Der Beweis wird nur für [math]\displaystyle{ \mathbb{D}:= \{(x, y) : r \le x \le s, f(x) \le y \le g(x)\}, r, s \in {}^{(\omega)}\mathbb{R}, f, g : \partial \mathbb{D} \rightarrow {}^{(\omega)}\mathbb{R} }[/math] geführt, da das jeweils um [math]\displaystyle{ \check{\pi} }[/math] gedrehte Äquivalent analog resultiert mit jedem [math]\displaystyle{ h }[/math]-Gebiet als Vereinigung solcher Mengen. Da sich die fehlende Beziehung analog ergibt, beschränkt sich die Betrachtung auf

[math]\displaystyle{ {\uparrow}_{\gamma }{u\,{\downarrow}x}=-{\uparrow}_{(x,y)\in {\mathbb{D}^{-}}}{\tfrac{{\downarrow} u}{{\downarrow} y}{\downarrow}(x,y)}. }[/math]

Unter Vernachlässigung der Teile von [math]\displaystyle{ \gamma }[/math] mit [math]\displaystyle{ {\downarrow}x = 0 }[/math] zum Kurvenintegral wie von [math]\displaystyle{ s := h(u(r, g(r)) - u(t, g(t))) }[/math] gilt

[math]\displaystyle{ -{\uparrow}_{\gamma }{u\,{\downarrow}x}-s={\uparrow}_{t}^{r}{u(x,g(x)){\downarrow}x}-{\uparrow}_{t}^{r}{u(x,f(x)){\downarrow}x}={\uparrow}_{t}^{r}{{\uparrow}_{f(x)}^{g(x)}{\tfrac{{\downarrow} u}{{\downarrow} y}}{\downarrow}y{\downarrow}x}={\uparrow}_{(x,y)\in {\mathbb{D}^{-}}}{\tfrac{{\downarrow} u}{{\downarrow} y}{\downarrow}(x,y)}.\square }[/math]

Satz von Singmaster

Es gibt maximal 8 verschiedene Binomialkoeffizienten gleichen Werts > 1.

Beweis:

Die Existenz ist klar wegen [math]\displaystyle{ \tbinom{3003}{1} = \tbinom{78}{2} = \tbinom{15}{5} = \tbinom{14}{6} }[/math] und dem Aufbau des Pascalschen Dreiecks. Mit [math]\displaystyle{ p \in {}^{\omega }{\mathbb{P}}, a,b ,c, d \in {}^{\omega }{\mathbb{N^*}}, \hat{a} \le r := p - b, \hat{a} \lt \hat{c} \le n := p - d, b \lt d }[/math] und [math]\displaystyle{ s \notin \mathbb{P} }[/math] für alle [math]\displaystyle{ s \in [\max(r - \acute{a},\grave{n}), r] }[/math] ergeben die Stirlingformel [math]\displaystyle{ {n!}^2\sim\pi(\hat{n}+\tilde{3}){(\tilde{\epsilon}n)}^{\hat{n}} }[/math] und der Primzahlsatz [math]\displaystyle{ \omega\tbinom{r}{a} \le {}_\epsilon\omega\tbinom{n}{c} }[/math] für [math]\displaystyle{ p \rightarrow \omega.\square }[/math]

Leseempfehlung

Nichtstandardmathematik