Hauptseite: Unterschied zwischen den Versionen

Aus MWiki
Wechseln zu: Navigation, Suche
(Satz des Monats)
K (Sätze von Green und Singmaster)
 
(87 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
 +
__NOTOC__
 
= Willkommen bei MWiki =
 
= Willkommen bei MWiki =
== Satz des Monats ==
+
== Sätze des Monats ==
Satz: Das Intexverfahren löst jedes lösbare LP in <math>\mathcal{O}({\vartheta}^{3})</math>.
+
=== Satz von Green ===
  
Beweis und Algorithmus: Zuerst normieren und skalieren wir <math>{b}^{T}y - {d}^{T}x \le 0, Ax \le b</math> und <math>{A}^{T}y \ge d</math>. Die ''Höhe'' <math>h</math> habe den Startwert <math>{h}_{0} := |\text{min } \{{b}_{1}, ..., {b}_{m}, {-d}_{1}, ..., {-d}_{n}\}|/r</math> mit dem Reduktionsfaktor <math>r \in \; ]0, 1[</math>.
+
Mit <math>h</math>-Gebiet <math>\mathbb{D} \subseteq {}^{(\omega)}\mathbb{R}^{2}</math>, infinitesimalem <math>h = |{\downarrow}x|= |{\downarrow}y| = |\overset{\rightharpoonup}{\gamma}(s) - \gamma(s)| = \mathcal{O}({\tilde{\omega}}^{m})</math>, hinreichend großem <math>m \in \mathbb{N}^{*}, (x, y) \in \mathbb{D}, \mathbb{D}^{-} := \{(x, y) \in \mathbb{D} : (x + h, y + h) \in \mathbb{D}\}</math>, einem geschlossenen, im Gegenuhrzeigersinn durchlaufenen Weg <math>\gamma: [a, b[\rightarrow \partial \mathbb{D}</math> bei Wahl von <math>\overset{\rightharpoonup}{\gamma}(s) = \gamma(\overset{\rightharpoonup}{s})</math> gilt mit <math>s \in [a, b[, A \subseteq {[a, b]}^{2}</math> und hinreichend <math>\alpha</math>-stetigen Funktionen <math>u, v: \mathbb{D} \rightarrow \mathbb{R}</math> mit ggf. nicht stetigen Ableitungen <math>{\downarrow} u/{\downarrow} x, {\downarrow} u/{\downarrow} y, {\downarrow} v/{\downarrow} x</math> und <math>{\downarrow} v/{\downarrow} y</math><div style="text-align:center;"><math>{\uparrow}_{\gamma }{(u\,{\downarrow}x+v\,{\downarrow}y)}={\uparrow}_{(x,y)\in {\mathbb{D}^{-}}}{\left( \tfrac{{\downarrow} v}{{\downarrow} x}-\tfrac{{\downarrow} u}{{\downarrow} y} \right){\downarrow}(x,y)}.</math></div>
  
Das LP min <math>\{h \in [0, {h}_{0}] : x \in {}^{\omega}\mathbb{R}_{\ge 0}^{n}, y \in {}^{\omega}\mathbb{R}_{\ge 0}^{m}, {b}^{T}y - {d}^{T}x \le h, Ax - b \le (h, ..., h)^{T} \in {}^{\omega}\mathbb{R}_{\ge 0}^{m}, d - {A}^{T}y \le (h, ..., h)^{T} \in {}^{\omega}\mathbb{R}_{\ge 0}^{n}\}</math> habe mit <math>\underline{v} := {v}^{T}</math> den zulässigen inneren Startpunkt <math>v := ({\underline{x}, \underline{y}, h)}^{T} \in {}^{\omega}\mathbb{R}_{\ge 0}^{m+n+1}</math>, z. B. <math>({\underline{0}, \underline{0}, {h}_{0})}^{T}</math>.
+
==== Beweis: ====
 +
Der Beweis wird nur für <math>\mathbb{D}:= \{(x, y) : r \le x \le s, f(x) \le y \le g(x)\}, r, s \in {}^{(\omega)}\mathbb{R}, f, g : \partial \mathbb{D} \rightarrow {}^{(\omega)}\mathbb{R}</math> geführt, da das jeweils um <math>\check{\pi}</math> gedrehte Äquivalent analog resultiert mit jedem <math>h</math>-Gebiet als Vereinigung solcher Mengen. Da sich die fehlende Beziehung analog ergibt, beschränkt sich die Betrachtung auf <div style="text-align:center;"><math>{\uparrow}_{\gamma }{u\,{\downarrow}x}=-{\uparrow}_{(x,y)\in {\mathbb{D}^{-}}}{\tfrac{{\downarrow} u}{{\downarrow} y}{\downarrow}(x,y)}.</math></div> Unter Vernachlässigung der Teile von <math>\gamma</math> mit <math>{\downarrow}x = 0</math> zum Kurvenintegral wie von <math>s := h(u(r, g(r)) - u(t, g(t)))</math> gilt<div style="text-align:center;"><math>-{\uparrow}_{\gamma }{u\,{\downarrow}x}-s={\uparrow}_{t}^{r}{u(x,g(x)){\downarrow}x}-{\uparrow}_{t}^{r}{u(x,f(x)){\downarrow}x}={\uparrow}_{t}^{r}{{\uparrow}_{f(x)}^{g(x)}{\tfrac{{\downarrow} u}{{\downarrow} y}}{\downarrow}y{\downarrow}x}={\uparrow}_{(x,y)\in {\mathbb{D}^{-}}}{\tfrac{{\downarrow} u}{{\downarrow} y}{\downarrow}(x,y)}.\square</math></div>
  
Es identifiziert die zueinander dualen LPs max <math>\{{d}^{T}x : d \in {}^{\omega}\mathbb{R}^{n}, x \in {P}_{\ge 0}\}</math> und min <math>\{{b}^{T}y : y \in {}^{\omega}\mathbb{R}_{\ge 0}^{m}, {A}^{T}y \ge d\}</math>.
+
=== Satz von Singmaster ===
  
Wir interpolieren nacheinander alle <math>{v}_{k}^{*} := (\text{max } {v}_{k} + \text{min } {v}_{k})/2</math>, bis alle <math>|\Delta{v}_{k}|</math> hinreichend klein sind. In <math>\mathcal{O}(\omega\vartheta)</math> extrapolieren wir dann <math>v</math> über <math>{v}^{*}</math> in den Polytoprand. Das <math>r</math>-fache der über <math>{v}^{*}</math> hinausgehenden Strecke legt den neuen Ausgangspunkt <math>v</math> fest.
+
Es gibt maximal 8 verschiedene Binomialkoeffizienten gleichen Werts > 1.
  
Folgt min<math>{}_{k} {h}_{k} t = 0</math> aus <math>t :=</math> min<math>{}_{k} \Delta{h}_{k}</math>, hören wir auf. Dann beginnen wir von vorn, bis min <math>h = 0</math> oder min <math>h > 0</math> feststeht. Da sich <math>h</math> bei fast jedem Durchlauf in <math>\mathcal{O}({\omega\vartheta}^{2})</math> wenigstens halbiert, liefert der starke Dualitätssatz die Behauptung.<math>\square</math>
+
==== Beweis: ====
 
+
Die Existenz ist klar wegen <math>\tbinom{3003}{1} = \tbinom{78}{2} = \tbinom{15}{5} = \tbinom{14}{6}</math> und dem Aufbau des Pascalschen Dreiecks. Mit <math>p \in {}^{\omega }{\mathbb{P}}, a,b ,c, d \in {}^{\omega }{\mathbb{N^*}}, \hat{a} \le r := p - b, \hat{a} < \hat{c} \le n := p - d, b < d</math> und <math>s \notin \mathbb{P}</math> für alle <math>s \in [\max(r - \acute{a},\grave{n}), r]</math> ergeben die Stirlingformel <math>{n!}^2\sim\pi(\hat{n}+\tilde{3}){(\tilde{\epsilon}n)}^{\hat{n}}</math> und der Primzahlsatz <math>\omega\tbinom{r}{a} \le {}_\epsilon\omega\tbinom{n}{c}</math> für <math>p \rightarrow \omega.\square</math>
== Leseempfehlungen ==
+
== Leseempfehlung ==
[http://www.epubli.de/shop/buch/Relil-Boris-Haase-9783844208726/11049 Relil - Religion und Lebensweg]
 
  
 
[https://de.calameo.com/books/00377797710a3d3e2cb97 Nichtstandardmathematik]
 
[https://de.calameo.com/books/00377797710a3d3e2cb97 Nichtstandardmathematik]
  
 
[[en:Main Page]]
 
[[en:Main Page]]

Aktuelle Version vom 1. Mai 2024, 02:04 Uhr

Willkommen bei MWiki

Sätze des Monats

Satz von Green

Mit [math]\displaystyle{ h }[/math]-Gebiet [math]\displaystyle{ \mathbb{D} \subseteq {}^{(\omega)}\mathbb{R}^{2} }[/math], infinitesimalem [math]\displaystyle{ h = |{\downarrow}x|= |{\downarrow}y| = |\overset{\rightharpoonup}{\gamma}(s) - \gamma(s)| = \mathcal{O}({\tilde{\omega}}^{m}) }[/math], hinreichend großem [math]\displaystyle{ m \in \mathbb{N}^{*}, (x, y) \in \mathbb{D}, \mathbb{D}^{-} := \{(x, y) \in \mathbb{D} : (x + h, y + h) \in \mathbb{D}\} }[/math], einem geschlossenen, im Gegenuhrzeigersinn durchlaufenen Weg [math]\displaystyle{ \gamma: [a, b[\rightarrow \partial \mathbb{D} }[/math] bei Wahl von [math]\displaystyle{ \overset{\rightharpoonup}{\gamma}(s) = \gamma(\overset{\rightharpoonup}{s}) }[/math] gilt mit [math]\displaystyle{ s \in [a, b[, A \subseteq {[a, b]}^{2} }[/math] und hinreichend [math]\displaystyle{ \alpha }[/math]-stetigen Funktionen [math]\displaystyle{ u, v: \mathbb{D} \rightarrow \mathbb{R} }[/math] mit ggf. nicht stetigen Ableitungen [math]\displaystyle{ {\downarrow} u/{\downarrow} x, {\downarrow} u/{\downarrow} y, {\downarrow} v/{\downarrow} x }[/math] und [math]\displaystyle{ {\downarrow} v/{\downarrow} y }[/math]

[math]\displaystyle{ {\uparrow}_{\gamma }{(u\,{\downarrow}x+v\,{\downarrow}y)}={\uparrow}_{(x,y)\in {\mathbb{D}^{-}}}{\left( \tfrac{{\downarrow} v}{{\downarrow} x}-\tfrac{{\downarrow} u}{{\downarrow} y} \right){\downarrow}(x,y)}. }[/math]

Beweis:

Der Beweis wird nur für [math]\displaystyle{ \mathbb{D}:= \{(x, y) : r \le x \le s, f(x) \le y \le g(x)\}, r, s \in {}^{(\omega)}\mathbb{R}, f, g : \partial \mathbb{D} \rightarrow {}^{(\omega)}\mathbb{R} }[/math] geführt, da das jeweils um [math]\displaystyle{ \check{\pi} }[/math] gedrehte Äquivalent analog resultiert mit jedem [math]\displaystyle{ h }[/math]-Gebiet als Vereinigung solcher Mengen. Da sich die fehlende Beziehung analog ergibt, beschränkt sich die Betrachtung auf

[math]\displaystyle{ {\uparrow}_{\gamma }{u\,{\downarrow}x}=-{\uparrow}_{(x,y)\in {\mathbb{D}^{-}}}{\tfrac{{\downarrow} u}{{\downarrow} y}{\downarrow}(x,y)}. }[/math]

Unter Vernachlässigung der Teile von [math]\displaystyle{ \gamma }[/math] mit [math]\displaystyle{ {\downarrow}x = 0 }[/math] zum Kurvenintegral wie von [math]\displaystyle{ s := h(u(r, g(r)) - u(t, g(t))) }[/math] gilt

[math]\displaystyle{ -{\uparrow}_{\gamma }{u\,{\downarrow}x}-s={\uparrow}_{t}^{r}{u(x,g(x)){\downarrow}x}-{\uparrow}_{t}^{r}{u(x,f(x)){\downarrow}x}={\uparrow}_{t}^{r}{{\uparrow}_{f(x)}^{g(x)}{\tfrac{{\downarrow} u}{{\downarrow} y}}{\downarrow}y{\downarrow}x}={\uparrow}_{(x,y)\in {\mathbb{D}^{-}}}{\tfrac{{\downarrow} u}{{\downarrow} y}{\downarrow}(x,y)}.\square }[/math]

Satz von Singmaster

Es gibt maximal 8 verschiedene Binomialkoeffizienten gleichen Werts > 1.

Beweis:

Die Existenz ist klar wegen [math]\displaystyle{ \tbinom{3003}{1} = \tbinom{78}{2} = \tbinom{15}{5} = \tbinom{14}{6} }[/math] und dem Aufbau des Pascalschen Dreiecks. Mit [math]\displaystyle{ p \in {}^{\omega }{\mathbb{P}}, a,b ,c, d \in {}^{\omega }{\mathbb{N^*}}, \hat{a} \le r := p - b, \hat{a} \lt \hat{c} \le n := p - d, b \lt d }[/math] und [math]\displaystyle{ s \notin \mathbb{P} }[/math] für alle [math]\displaystyle{ s \in [\max(r - \acute{a},\grave{n}), r] }[/math] ergeben die Stirlingformel [math]\displaystyle{ {n!}^2\sim\pi(\hat{n}+\tilde{3}){(\tilde{\epsilon}n)}^{\hat{n}} }[/math] und der Primzahlsatz [math]\displaystyle{ \omega\tbinom{r}{a} \le {}_\epsilon\omega\tbinom{n}{c} }[/math] für [math]\displaystyle{ p \rightarrow \omega.\square }[/math]

Leseempfehlung

Nichtstandardmathematik