Hauptseite: Unterschied zwischen den Versionen

Aus MWiki
Wechseln zu: Navigation, Suche
(Darstellungssätze für Integrale und Ableitungen)
 
(79 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 2: Zeile 2:
 
= Willkommen bei MWiki =
 
= Willkommen bei MWiki =
 
== Sätze des Monats ==
 
== Sätze des Monats ==
=== Cauchyscher Integralsatz ===
+
=== Definition ===
  
Für die Nachbarschaftsrelationen <math>B \subseteq {A}^{2}</math> und <math>D \subseteq [a, b]</math> mit einer einfach zusammenhängenden <math>h</math>-Menge <math>A \subseteq {}^{\omega}\mathbb{C}</math>, infinitesimalem <math>h</math> sowie einer holomorphen Funktion <math>f: A \rightarrow {}^{\omega}\mathbb{C}</math> und einem geschlossenen Weg <math>\gamma: [a, b[\rightarrow \partial A</math>, wenn wir <math>\curvearrowright B \gamma(t) = \gamma(\curvearrowright D t)</math> mit <math>t \in [a, b[</math> wählen, gilt
+
Seien <math>f_n^*(z) = f(\eta_nz)</math> die <em>Schwestern</em> zur Taylorreihe <math>f(z) \in \mathcal{O}(\mathbb{D})</math> um 0 auf dem Gebiet <math>\mathbb{D} \subseteq {}^{\omega}\mathbb{C}</math> mit <math>m, n \in {}^{\omega}\mathbb{N}^{*}</math> und <math>\eta_n^m := \underline{1}^{2^{\lceil m/n \rceil}}</math> sowie <math>\delta_n^*f = \tilde{2}(f - f_n^*)</math> die <em>halben Schwesterabstände</em> von <math>f</math>. Mit <math>\mu_n^m := m!n!/(m + n)!</math> bilden <math>\mu</math> und <math>\eta</math> einen eigenen auf Ebene der Taylorreihen auflösbaren Kalkül, der eine einfache und endliche geschlossene Darstellung von Integralen und Ableitungen erlaubt.<math>\triangle</math>
<div style="text-align:center;"><math>\int\limits_{\gamma }{f(z)dBz}=0.</math></div>
 
  
'''Beweis:''' Aufgrund der Cauchy-Riemannschen partiellen Differentialgleichungen und des Satzes von Green gilt mit <math>x := \text{Re} \, z, y := \text{Im} \, z, u := \text{Re} \, f, v := \text{Im} \, f</math> und <math>{A}^{-} := \{z \in A : z + h + ih \in A\}</math>
+
=== Darstellungssatz für Integrale ===
  
<div style="text-align:center;"><math>\int\limits_{\gamma }{f(z)dBz}=\int\limits_{\gamma }{\left( u+iv \right)\left( dBx+idBy \right)}=\int\limits_{z\in {{A}^{-}}}{\left( i\left( \frac{\partial Bu}{\partial Bx}-\frac{\partial Bv}{\partial By} \right)-\left( \frac{\partial Bv}{\partial Bx}+\frac{\partial Bu}{\partial By} \right) \right)dB(x,y)}=0.\square</math></div>
+
Die Taylorreihe (s. u.) <math>f(z) \in \mathcal{O}(\mathbb{D})</math> um 0 auf <math>\mathbb{D} \subseteq {}^{\omega}\mathbb{C}</math> ergibt mit <math>\grave{m}, n \in {}^{\omega}\mathbb{N}^*</math><div style="text-align:center;"><math>{\uparrow}_0^z...{\uparrow}_0^{\zeta_2}{f(\zeta_1){\downarrow}\zeta_1\;...\;{\downarrow}\zeta_n} = \widetilde{n!} f(z\mu_n) z^n.\square</math></div>
  
=== Fundamentalsatz der Algebra ===
+
=== Darstellungssatz für Ableitungen ===
  
Für jedes nicht-konstante Polynom <math>p \in {}^{(\omega)}\mathbb{C}</math> gibt es ein <math>z \in {}^{(\omega)}\mathbb{C}</math> mit <math>p(z) = 0</math>.
+
Mit <math>{}^{\widetilde{\nu}}\dot{\mathbb{C}} \subset \mathbb{D} \subseteq {}^{\omega}\mathbb{C}</math> ergeben die Taylorreihe<div style="text-align:center;"><math>f(z):=f(0) + {\LARGE{\textbf{+}}}_{m=1}^{\omega }{\widetilde{m!}\,{{f}^{(m)}}(0){z^m}},</math></div><math>\varepsilon := \tilde{2}^j\tilde{r}, j \in {}^{\omega}\mathbb{Z}, n = \epsilon^{\sigma} \in {}^{\omega}\mathbb{N}^{*}, u :=\epsilon^{\tilde{n} \hat{\underline{\pi}}}</math> und der Konvergenzradius <math>r \in {}^{\nu}{\mathbb{R}}_{&gt;0}</math> von <math>f</math><div style="text-align:center;"><math>{{f}^{(n)}}(0)=2^{jn}\acute{n}!{\LARGE{\textbf{+}}}_{k=1}^{n}{\delta_n^* f(\tilde{2}^j u^k)}.</math></div>
  
'''Indirekter Beweis:''' Durch affin-lineare Variablensubstitutionen können wir <math>1/p(0) \ne \mathcal{O}(\text{d0})</math> erreichen. Wir nehmen <math>p(z) \ne 0</math> für alle <math>z \in {}^{(\omega)}\mathbb{C}</math> an.
+
==== Beweis: ====
 +
Satz von Taylor<ref name="Remmert">[[w:Reinhold Remmert|<span class="wikipedia">Remmert, Reinhold</span>]]: ''Funktionentheorie 1'' : 3., verb. Aufl.; 1992; Springer; Berlin; ISBN 9783540552338, S. 165 f.</ref> und die Eigenschaften der Einheitswurzeln.<math>\square</math>
  
Für das holomorphe <math>f(z) := 1/p(z)</math> gilt <math>f(1/\text{d0}) = \mathcal{O}(\text{d0})</math> und aufgrund der Mittelwertungleichung <math>|f(0)| \le {|f|}_{\gamma}</math> mit <math>\gamma = \partial\mathbb{B}_{r}(0)</math> und beliebigem <math>r \in {}^{(\omega)}\mathbb{R}_{&gt;0}</math>, also <math>f(0) = \mathcal{O}(\text{d0})</math> im Widerspruch zur Voraussetzung.<math>\square</math>
+
== Einzelnachweis ==
 +
<references />
  
 
== Leseempfehlung ==
 
== Leseempfehlung ==

Aktuelle Version vom 31. März 2024, 22:58 Uhr

Willkommen bei MWiki

Sätze des Monats

Definition

Seien [math]\displaystyle{ f_n^*(z) = f(\eta_nz) }[/math] die Schwestern zur Taylorreihe [math]\displaystyle{ f(z) \in \mathcal{O}(\mathbb{D}) }[/math] um 0 auf dem Gebiet [math]\displaystyle{ \mathbb{D} \subseteq {}^{\omega}\mathbb{C} }[/math] mit [math]\displaystyle{ m, n \in {}^{\omega}\mathbb{N}^{*} }[/math] und [math]\displaystyle{ \eta_n^m := \underline{1}^{2^{\lceil m/n \rceil}} }[/math] sowie [math]\displaystyle{ \delta_n^*f = \tilde{2}(f - f_n^*) }[/math] die halben Schwesterabstände von [math]\displaystyle{ f }[/math]. Mit [math]\displaystyle{ \mu_n^m := m!n!/(m + n)! }[/math] bilden [math]\displaystyle{ \mu }[/math] und [math]\displaystyle{ \eta }[/math] einen eigenen auf Ebene der Taylorreihen auflösbaren Kalkül, der eine einfache und endliche geschlossene Darstellung von Integralen und Ableitungen erlaubt.[math]\displaystyle{ \triangle }[/math]

Darstellungssatz für Integrale

Die Taylorreihe (s. u.) [math]\displaystyle{ f(z) \in \mathcal{O}(\mathbb{D}) }[/math] um 0 auf [math]\displaystyle{ \mathbb{D} \subseteq {}^{\omega}\mathbb{C} }[/math] ergibt mit [math]\displaystyle{ \grave{m}, n \in {}^{\omega}\mathbb{N}^* }[/math]

[math]\displaystyle{ {\uparrow}_0^z...{\uparrow}_0^{\zeta_2}{f(\zeta_1){\downarrow}\zeta_1\;...\;{\downarrow}\zeta_n} = \widetilde{n!} f(z\mu_n) z^n.\square }[/math]

Darstellungssatz für Ableitungen

Mit [math]\displaystyle{ {}^{\widetilde{\nu}}\dot{\mathbb{C}} \subset \mathbb{D} \subseteq {}^{\omega}\mathbb{C} }[/math] ergeben die Taylorreihe

[math]\displaystyle{ f(z):=f(0) + {\LARGE{\textbf{+}}}_{m=1}^{\omega }{\widetilde{m!}\,{{f}^{(m)}}(0){z^m}}, }[/math]

[math]\displaystyle{ \varepsilon := \tilde{2}^j\tilde{r}, j \in {}^{\omega}\mathbb{Z}, n = \epsilon^{\sigma} \in {}^{\omega}\mathbb{N}^{*}, u :=\epsilon^{\tilde{n} \hat{\underline{\pi}}} }[/math] und der Konvergenzradius [math]\displaystyle{ r \in {}^{\nu}{\mathbb{R}}_{>0} }[/math] von [math]\displaystyle{ f }[/math]

[math]\displaystyle{ {{f}^{(n)}}(0)=2^{jn}\acute{n}!{\LARGE{\textbf{+}}}_{k=1}^{n}{\delta_n^* f(\tilde{2}^j u^k)}. }[/math]

Beweis:

Satz von Taylor[1] und die Eigenschaften der Einheitswurzeln.[math]\displaystyle{ \square }[/math]

Einzelnachweis

  1. Remmert, Reinhold: Funktionentheorie 1 : 3., verb. Aufl.; 1992; Springer; Berlin; ISBN 9783540552338, S. 165 f.

Leseempfehlung

Nichtstandardmathematik