Hauptseite

Aus MWiki
Version vom 31. Juli 2023, 19:38 Uhr von Borishaase (Diskussion | Beiträge) (Primzahlsatz und Satz von Gelfond-Schneider)
Wechseln zu: Navigation, Suche

Willkommen bei MWiki

Sätze des Monats

Primzahlsatz

Für [math]\displaystyle{ \pi(x) := |\{p \in {}^{\omega}{\mathbb{P}} : p \le x \in {}^{\omega}{\mathbb{R}}\}| }[/math] gilt [math]\displaystyle{ \pi(\omega) = \widetilde{{_e}\omega}\omega + \mathcal{O}({_e}\omega{\omega}^{\tilde{2}}) }[/math].

Beweis:

Im Sieb des Eratosthenes nehmen die Primzahlanzahlen nahezu regelmäßig ab. Aus Intervallen fester Länge [math]\displaystyle{ y \in {}^{\omega}{\mathbb{R}_{>0}} }[/math] lassen sich [math]\displaystyle{ \hat{y} }[/math] Mengen-2-Tupel von Primzahlen so bilden, dass das erste Intervall eine unveränderte repräsentative Primzahldichte hat und das zweite Intervall leer ist, dann auf ein Intervall mit den zweitmeisten eines mit den zweitwenigsten Primzahlen folgt usw.

Ist mit Induktionsanfang [math]\displaystyle{ n }[/math] = 2 bzw. 3 die Induktionsannahme, dass mit [math]\displaystyle{ n \in {}^{\omega}{\mathbb{N}_{\ge2}} }[/math] und beliebigem [math]\displaystyle{ x_4 \in [2, 4[ }[/math] das erste Intervall [math]\displaystyle{ x_n/{_e}x_n }[/math] Primzahlen enthält, so beweist die Betrachtung der Primzahllücken von primen [math]\displaystyle{ p\# /q + 1 }[/math] mit [math]\displaystyle{ p, q \in {}^{\omega}\mathbb{P} }[/math] im Induktionsschritt von [math]\displaystyle{ x_n }[/math] nach [math]\displaystyle{ x_n^2 }[/math], dass sich dann [math]\displaystyle{ \pi(x_n^2) = \pi(x_n) \check{x}_n }[/math] Primzahlen nur aus [math]\displaystyle{ \pi(x_n) = x_n/{_e}x_n }[/math] ergeben. Der durchschnittliche Primzahlabstand beträgt [math]\displaystyle{ {_e}x_n }[/math] und die maximale Entsprechung von [math]\displaystyle{ x_n^2 }[/math] zu [math]\displaystyle{ x_n }[/math] ist [math]\displaystyle{ \omega }[/math] zu [math]\displaystyle{ {\omega}^{\tilde{2}}.\square }[/math]

Satz von Gelfond-Schneider

Mit [math]\displaystyle{ a, c \in {}^{\omega} \mathbb{A}_\mathbb{C}^{*} \setminus \{1\}, Q := {}^{\omega} \mathbb{R} \setminus {}^{\omega} \mathbb{T}_\mathbb{R} }[/math] und [math]\displaystyle{ b, \varepsilon \in {}^{\omega} \mathbb{A}_\mathbb{C} \setminus Q }[/math] gilt [math]\displaystyle{ a^b \in {}^{\omega} \mathbb{T}_\mathbb{C} }[/math].

Beweis:

Setzt [math]\displaystyle{ b \in Q }[/math] das Minimalpolynom [math]\displaystyle{ p(a^b) = p(c^q) }[/math] auf 0, so liefert die Annahme [math]\displaystyle{ a^b = c^{q+\varepsilon} }[/math] mit maximalem [math]\displaystyle{ q \in Q_{\gt 0} }[/math] den Widerspruch [math]\displaystyle{ 0 = (p(a^b) - p(c^q)) / (a^b - c^q) = p^\prime(a^b) = p^\prime(c^q) \ne 0.\square }[/math]

Leseempfehlung

Nichtstandardmathematik