Satz von Beal: Unterschied zwischen den Versionen
(Satz von Beal) |
K (Satz von Beal) |
||
(10 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
− | Für <math>a^m + b^n = c^k</math> mit <math>a, b, c \in \mathbb{N}^{*}</math> und <math>k, m, n \in \mathbb{N}_{\ge 3}</math> gilt ggT<math>(a, b, c) > 1.</math> | + | Für <math>a^m + b^n = c^k</math> mit <math>a, b, c, d, e, r, s \in \mathbb{N}^{*}</math> und <math>k, m, n \in \mathbb{N}_{\ge 3}</math> gilt <math>d :=</math> ggT<math>(a, b, c) > 1.</math> |
− | '''Beweis:''' | + | '''Beweis:''' Sei <math>(da)^n + (db)^m = (dc)^n</math> der nötige Ansatz, um <math>d</math> nach Rechnen mod <math>d</math> herauszukürzen. Wird verallgemeinert <math>b^s + e^m = c^s</math> wieder mit <math>d^{rm}</math> multipliziert, folgt <math>b = 1</math>, <math>c = d</math> und <math>s \ne m \notin 2\mathbb{N}</math>. Die zweite allgemeine Form <math>1 + d^s = e^m</math> ergibt ebenso mit <math>m \ne s \notin 2\mathbb{N}</math> die Behauptung durch Widerspruch.<math>\square</math> |
+ | |||
+ | '''Folgerung''': Wegen <math>m \ne s</math> wird <math>a^n + b^n = c^n</math> von keinem <math>n \in {}^{\omega}\mathbb{N}_{\ge 3}</math> für beliebige <math>a, b, c \in {}^{\omega}\mathbb{N}^{*}</math> erfüllt. | ||
+ | |||
+ | == Siehe auch == | ||
+ | * [[Liste mathematischer Symbole]] | ||
+ | * [[w:Andrew_Beal#Beal-Vermutung|<span class="wikipedia">Beal-Vermutung</span>]] | ||
+ | [[Kategorie:Teilgebiet der Mathematik]] | ||
[[en:Beal's theorem]] | [[en:Beal's theorem]] |
Aktuelle Version vom 11. August 2024, 07:34 Uhr
Für [math]\displaystyle{ a^m + b^n = c^k }[/math] mit [math]\displaystyle{ a, b, c, d, e, r, s \in \mathbb{N}^{*} }[/math] und [math]\displaystyle{ k, m, n \in \mathbb{N}_{\ge 3} }[/math] gilt [math]\displaystyle{ d := }[/math] ggT[math]\displaystyle{ (a, b, c) \gt 1. }[/math]
Beweis: Sei [math]\displaystyle{ (da)^n + (db)^m = (dc)^n }[/math] der nötige Ansatz, um [math]\displaystyle{ d }[/math] nach Rechnen mod [math]\displaystyle{ d }[/math] herauszukürzen. Wird verallgemeinert [math]\displaystyle{ b^s + e^m = c^s }[/math] wieder mit [math]\displaystyle{ d^{rm} }[/math] multipliziert, folgt [math]\displaystyle{ b = 1 }[/math], [math]\displaystyle{ c = d }[/math] und [math]\displaystyle{ s \ne m \notin 2\mathbb{N} }[/math]. Die zweite allgemeine Form [math]\displaystyle{ 1 + d^s = e^m }[/math] ergibt ebenso mit [math]\displaystyle{ m \ne s \notin 2\mathbb{N} }[/math] die Behauptung durch Widerspruch.[math]\displaystyle{ \square }[/math]
Folgerung: Wegen [math]\displaystyle{ m \ne s }[/math] wird [math]\displaystyle{ a^n + b^n = c^n }[/math] von keinem [math]\displaystyle{ n \in {}^{\omega}\mathbb{N}_{\ge 3} }[/math] für beliebige [math]\displaystyle{ a, b, c \in {}^{\omega}\mathbb{N}^{*} }[/math] erfüllt.