Satz von Catalan
Es gilt [math]\displaystyle{ \{(m, n, x, y) \in {}^{\omega}\mathbb{N}_{\ge 2}^4 : 1 + x^m = y^n\} = \{(3, 2, 2, 3)\} }[/math].
Indirekter Beweis: Der Satz von Beal ergibt min[math]\displaystyle{ (m, n) = 2 }[/math]. Mit [math]\displaystyle{ \acute{n} \in {}^{\omega}2\mathbb{N}^{*} }[/math] zeigt Quadrieren [math]\displaystyle{ 1 + 4{\check{x}}^2 = (1 + \acute{y})^n }[/math] und [math]\displaystyle{ (1 + 2^rz)^n \equiv 1 + 2^r{\check{x}}^2 \equiv 1 }[/math] mod [math]\displaystyle{ 2^{\overset{\scriptsize{\grave{}}}{r}} }[/math] für [math]\displaystyle{ \acute{y} = 4z }[/math] und alle [math]\displaystyle{ r \in {}^{\omega}\mathbb{N}_{\ge 3} }[/math] sowie [math]\displaystyle{ 1 + x^2 \equiv 2 \ne 0 \equiv 2^n{\check{y}}^n }[/math] mod [math]\displaystyle{ 8 }[/math]. Aus [math]\displaystyle{ \acute{m} \in {}^{\omega}2\mathbb{N}^{*} }[/math] und [math]\displaystyle{ s \in {}^{\omega}\mathbb{N}^{*} }[/math] folgt [math]\displaystyle{ x^m = \acute{y}\overset{\scriptsize{\grave{}}}{y} }[/math] mit [math]\displaystyle{ s^m \ne \acute{y} \in {}^{\omega}2\mathbb{N}^{*} }[/math] und es gilt [math]\displaystyle{ x^m = 8\check{s}\acute{s} = 8.\square }[/math]